Siedle Group

NOVOHALL
 Rotary Sensor touchless technology transmissive

Series RFC-4800

Special features

- Touchless hall technology
- Electrical range up to 360°
- 2-part, mechanically decoupled
- High protection class, IP67, IP6K9K
- Resolution up to 14 Bit
- Wear-free
- Temperature range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Single and multi-channel versions
- Optimized for use in industrial and mobile applications
- Interfaces:

Voltage, current, SSI, incremental, CANopen, SPI, IO-Link

- Customized versions

The two-part design consisting of sensor and magnetic position marker offers great flexibility when mounting. The absence of shaft and bearing makes the assembly much less sensitive to axial and radial application tolerances - separate couplings are obsolete.

Measurements can be made transmissively through any nonferromagnetic material.
The sensor is perfectly suitable for use in harsh environmental conditions through the completely encapsulated electronics.

Applications

- Manufacturing Engineering

Textile machinery
Packaging machinery
Sheet metal and wire machinery

- Automation technology
- Medical engineering
- Mobile working machines

Industrial trucks
Construction machinery
Agricultural and forestry machinery

- Marine applications

Siedle Group

Contents

Drawings 3
Mechanical Data 4
Output Characteristics 5
Analog Versions for Industrial Applications
Technical Data 6
Ordering Specifications 7
Analog Versions for Mobile Applications
Technical Data 8
Ordering Specifications 9
Digital Versions
SSI 10
Incremental for Industrial an Mobile Applications 11
SPI 14
Ordering Specifications 15
Fieldbus Versions, IO-Link
CANopen 16
IO-Link 17
Ordering Specifications 18
Accessories
Position Markers 19
M12 Connector System 22
Signal processing 25
Customized Versions
Connecting Options 26

novotechnik

Siedle Group

Drawings

Pin assignment M 12 connector
A-coded

Pin assignment M12 connector

CAD data see
www.novotechnik.de/en/ download/cad-data/

Siedle Group

Mechanical Data

Description	
Housing	high grade, temperature resistant plastic
Electrical connection	Cable $4 \times 0.14 \mathrm{~mm}^{2}$, AWG 26, TPE, shielded (analog voltage / current CE) Cable $4 \times 0.14 \mathrm{~mm}^{2}$, AWG 26, TPE, unshielded (analog voltage / current mobil) Cable $4 \times 0.5 \mathrm{~mm}^{2}$, AWG 20, TPE, shielded (CANopen) Cable $5 \times 0.14 \mathrm{~mm}^{2}$, AWG 26, PUR, shielded (SPI) Cable $8 \times 0.25 \mathrm{~mm}^{2}$, AWG 24, TPE, shielded (SSI, Incremental, CANopen IN/OUT) Wire $0.5 \mathrm{~mm}^{2}$, AWG 20, PVC (analog voltage / current, Incremental Open Collector) Connector M12x1, 4-pin / 5-pin / 8-pin with cable L=0.15 m
Mechanical Data	
Dimensions	see dimension drawing
Mounting	with 2 lens flange head screws M4 (enclosed in delivery)
Fastening torque of mounting screws	250 Ncm
Mechanical travel	360 continuous
Maximum operational speed	mechanically unlimited
Weight (without connection)	approx. 50 g
Vibration IEC 60068-2-6	$5 \ldots 2000$ Hz Amax $=0.75$ mm $\operatorname{amax}=20$ g
Shock IEC 60068-2-27	50 (6 ms) g
Life	mechanically unlimited
Protection class DIN EN 60529	IP67 / IP68 / IP6K9K (not with M12 connector)

novotechnik

Siedle Group

Output Characteristics

One-channel, cw

Two channels, crossed output characteristics, channels 1 cw

On request: Trapezoid output characteristic

On request: 2 offset output characteristics

One-channel, ccw

On request: Two channels, signal $2=0.5 \times$ signal 1

On request: Different gradients

On request: Parabolic output characteristic

siedle Group

Technical Data -
Analog Versions
- Voltage
- Current
for Industrial Applications

Technical Data - Versions for Industrial Applications
Design optimized for use in machine and plant engineering. High reliability, simple interface to PLC, high variety,

Connection assignment

One-channel versions		
Signal	Cable code 2 _-	Connector M12 code 501
Supply voltage Ub	GN	pin 1
Signal output	WH	pin 2
GND	BN	pin 3
Not assigned	YE	pin 4

Cable shielding connect to GND.

Redundant versions		
Signal	Cable code 2	Connector M12 code 501
Supply voltage Ub	GN	pin 1
Signal output 1	WH	pin 2
GND	BN	pin 3
Signal output 2	YE	pin 4

Cable shielding connect to GND

Siedle Group

Ordering
Specifications -
Analog Versions
- Voltage
- Current
for Industrial Applications

Ordering specifications

Preferred types printed in bold:

- Delivery time up to 25 pcs. within 10 working days
- Best low-volume pricing

Supply voltage Ub
 1: $24 \mathrm{~V}(18 \ldots 30 \mathrm{~V})$
 2: 5 V (4.5 ... 5.5 V)

Output signal supply voltage $\mathrm{Ub}=24 \mathrm{~V}$
1: $0.1 \ldots 10 \mathrm{~V}$ (only one-channel)
2: 4 ... 20 mA (only one-channel)

Output signal supply voltage $\mathrm{Ub}=5 \mathrm{~V}$
1: 0.25 ... 4.75 V ratiometric to supply voltage Ub
2: $0.5 \ldots 4.5 \mathrm{~V}$ ratiometric to supply voltage Ub
Output characteristics
1: Rising CW
2: Rising CCW
3: Crossed output channel 1 rising cw (partly redundant)
Other output characteristics on request
Electrical connections
201: Cable 4-pole, $0,5 \mathrm{~m}$ shielded 202: Cable 4-pole, 1 m shielded 206: Cable 4-pole, 3 m shielded 210: Cable 4-pole, 5 m shielded 220: Cable 4 -pole, 10 m shielded 501: M12 connector 4-pin, with cable, $L=0.15 \mathrm{~m}$, shielded Cable versions and assembled connectors on request

Technical Data－
Analog Versions
－Voltage
－Current
for Mobile Applications

Technical Data－Versions for Mobile Applications
These versions are optimzed for the high requirements in mobile applications．
Tested to the highest requirements as ISO－pulses and high interferences to ISO 11452.

Type Designations	$\begin{aligned} & \text { RFC-4801- _----2 }-{ }^{--}--- \\ & \text {ratiometric } \end{aligned}$	$\begin{aligned} & \text { RFC-4801- _ _ - }-3 \ldots-{ }_{-}^{-}-\quad \\ & \text { voltage } \end{aligned}$	$\begin{aligned} & \text { RFC-4801- _-- }-322_{------}^{-} \\ & \text {current } \end{aligned}$	
Electrical Data				
Output signal	ratiometric to supply voltage Ub $\begin{aligned} & 0.25 \ldots 4.75 \mathrm{~V} \\ & 0.5 \ldots 4.5 \mathrm{~V} \\ & (\mathrm{load} \geq 1 \mathrm{k} \Omega) \end{aligned}$	$\begin{aligned} & \hline 0.25 \ldots 4.75 \mathrm{~V} \\ & 0.5 \ldots 4.5 \mathrm{~V} \\ & \text { (load } \geq 10 \mathrm{k} \Omega \text {) } \end{aligned}$	$4 \ldots 20 \mathrm{~mA}$ （burden max． 250Ω ）	
Number of channels	$1 / 2$	1／2	1	
Update rate	typical 5			kHz
Resolution	12			bit
Measuring range	$0 \ldots 30$ up to $0 . . .360$ ，in 10°－steps			。
Independent linearity	$\leq 0,5$			$\pm \%$ FS
Repeatability	$\leq 0,1$			。
Hysteresis	$\leq 0,1$			。
Temperature error at measuring range 30 and 170°	± 0.825	± 1.24	± 1.24	\％FS
Temperature error at measuring range 180 and 360°	± 0.41	± 0.66	± 0.66	\％FS
Supply voltage Ub	5 （4．5 ．．．5．5）	12／24（9 ．．．34）	12／24（9 ．．．34）	VDC
Current consumption（w／o load）	typical 15 （typical 8 on request）per channel			mA
Reverse voltage	yes，supply lines and outputs			
Short circuit protection	yes（vs．GND and supply voltage）			
Insulation resistance（500 VDC）	≥ 10			$\mathrm{M} \Omega$
Cross－section cable	AWG 26， 0.14			mm^{2}
Cross－section wire	AWG 20， 0.5			mm^{2}
Environmental Data				
Operating temperature	$-40 \ldots+125$	$-40 \ldots+125$	$-40 \ldots+105(+125$ ，if supply voltage $\leq 28 \mathrm{~V}$ ）	C
	$-25 \ldots+85$ with connector M12	$-25 \ldots+85$ with connector M12	$-25 \ldots+85$ with connector M12	${ }^{\circ} \mathrm{C}$
MTTF（DIN EN ISO 13849－1 parts count method，w／o load，wc）	290 （one－channel） 288 （per channel，partly redundant） 290 （per channel，fully redundant）	91 （one－channel） 101 （per channel，partly redundant）	109 （one－channel）	years years years
Functional safety	If you need assistance in using our products in safety－related systems，please contact us			
EMC compatibility	ISO 11452－2 Radiated EM RF fields $100 \mathrm{~V} / \mathrm{m}$ ISO 11452－4 BCI（Bulk current injection） 100 mA CISPR25 Radiated emission class 5 SAE J1113－2 Conducted immunity level 2 SAE J1113－13 Packaging and handling 4－20 kV SAE J1113－22 Radiated magnetic field $80 \mu \mathrm{~T}$ SAE J1113－26 AC power line electric field 15 kV EN61000－4－2 Immunity to static discharge（ESD） $4 \mathrm{kV}, 8 \mathrm{kV}, 15 \mathrm{kV}$ EN 55011／EN 55022／A1 Radiated disturbances class B	ISO 11452－5 Radiated EM RF fields ISO 11452－2 Radiated EM RF fields ISO 7637－2 Pulse 1a，2a，3a，3b，4， CISPR25 Radiated emission class 5 ISO 7637－3 Transient transmission（ ISO TR10605 Packaging and Handlin	```300 V/m 100 V/m n/off) Level 3 ng + Component test 8 kV/15 kV```	

Connection assignment

One－channel versions			
Signal	Lead wires code 4＿－	Cable code 2＿－	Connector M12 code 551
Supply voltage Ub	RD	GN	pin 1
Signal output	BU	WH	pin 2
GND	BK	BN	pin 3
Not assigned	-	YE	pin 4

Redundant versions			
Signal	Lead wires code 4＿－	Cable code 2＿－	Connector M12 code 551
Supply voltage Ub 1	RD	GN	pin 1
Signal output 1	BU	WH	pin 2
GND 1	BIK	BN	pin 3
Signal output 2	BU／WH	YE	pin 4
Supply voltage Ub 2	RD／WH	-	-
GND 2	BK／WH	-	-

Siedle Group

Ordering
Specifications -
Analog Versions
for Mobile Applications

Ordering specifications

Preferred types printed in bold:

- Delivery time up to 25 pcs. within 10 working days
- Best low-volume pricing

Supply voltage
2: Supply voltage Ub $=5 \mathrm{~V}$ (4.5 ... 5.5 V)
3: Supply voltage $\mathrm{Ub}=12 / 24 \mathrm{~V}(9.0 \ldots 34.0 \mathrm{~V})$

```
Output signal Supply voltage \(\mathrm{Ub}=5 \mathrm{~V}\)
1: 0.25 ... 4.75 V ratiometric to supply voltage Ub
2: \(0.5 \ldots 4.5 \mathrm{~V}\) ratiometric to supply voltage Ub
Output signal supply voltage \(\mathrm{Ub}=12 / 24 \mathrm{~V}\)
2: 4 ... 20 mA (only one-channel)
4: \(0.5 \ldots 4.5 \mathrm{~V}\)
5: 0.25 ... 4.75 V
Output characteristics
1: Rising cw
2: Rising ccw
3: Crossed output channel 1 rising cw (partly redundant)
4: Crossed output channel 1 rising cw (fully redundant)
```

Other output characteristics on request

Electrical connections
251: Cable 4-pole, 0,5 m unshielded, one-channel and partly redundant 252: Cable 4-pole, 1 m unshielded, one-channel and partly redundant 256: Cable 4-pole, 3 m unshielded, one-channel and partly redundant 260: Cable 4-pole, 5 m unshielded, one-channel and partly redundant 270: Cable 4-pole, 10 m unshielded, one-channel and partly redundant 401: Lead wires $3 \times L=0,5 \mathrm{~m}$, single 411: Lead wires $4 \times L=0,5 \mathrm{~m}$, partly redundant
421: Lead wires $6 \times L=0,5 \mathrm{~m}$, fully redundant
551: M12 connector 4-pin, with cable $L=0.15 \mathrm{~m}$ unshielded, one-channel and partly redundant
Cable versions and assembled connectors on request

Siedle Group

Technical Data SSI Interface

Type Designations	RFC-48_ -214-41 _Supply voltage 5 VDC	RFC-48 _ _-214-44 _- Supply voltage 24 VDC	
Electrical Data			
Protocol	SSI 13 bit (12 bit data + 1 stop bit)		
Inputs	RS422 compatible, CLK lines via optocoupler galvanically isolated		
Monoflop time (tm)	16		$\mu \mathrm{s}$
Coding	Gray		
Update rate (internal)	2000		kHz
Resolution across 360°	12		bit
Measuring range	360		。
Maximum operational speed position marker	30000 , higher speeds on request		min-1
Independent linearity	typical 0,5		$\pm \%$ FS
Repeatability	≤ 0.2		。
Hysteresis	≤ 0.7, lower hysteresis on request		-
Temperature error	0.375		$\pm \%$ FS
Supply voltage Ub	5 (4.5 ... 5.5)	24 (18... 30)	VDC
Current consumption (w/o load)	typical 27	typical 10	mA
Reverse voltage	yes, supply lines		
Short circuit protection	yes (ouput vs. supply voltage and GND)	yes (output vs. GND)	
Ohmic load at outputs	≥ 120		Ω
Max. clock rate	1		MHz
Insulation resistance (500 VDC)	≥ 10		$\mathrm{M} \Omega$
Cross-section cable	AWG 24, 0.25		mm^{2}
Environmental Data			
Operating temperature	$-40 \ldots+85(-25 \ldots+85$ with M12 connector)		${ }^{\circ} \mathrm{C}$
MTTF (DIN EN ISO 13849-1 parts count method, w/o load, wc)	141	102	years
Functional safety	If you need assistance in using our products in safety-related systems, please contact us		
EMC compatibility $C E$	EN 61000-4-2 Electrostatic discharge (ESD) $4 \mathrm{kV}, 8 \mathrm{kV}$ EN 61000-4-3 Electromagnetic fields $10 \mathrm{~V} / \mathrm{m}$ EN 61000-4-4 Electrical fast transients (burst) 1 kV EN 61000-4-6 Conducted disturbances, induced by RF fields 10 V eff. EN 61000-4-8 Power frequency magnetic fields $30 \mathrm{~A} / \mathrm{m}$ EN 55016-2-3 Noise radiation class B		

Connection assignment		
Signal	Cable code 4__	Connector M12 code 531
Supply voltage Ub	WH	pin 1
GND	BN	pin 2
Clock input SSI CIk-	GN	pin 3
Clock input SSI CIk+	YE	pin 4
Signal output SSI Data-	GY	pin 5
Signal output SSI Data+	PK	pin 6
Not assigned	BU	pin 7
Not assigned	RD	pin 8

When the marking of the position marker is pointing towards the cable, the sensor output is near the electrical center position.

Siedle Group

Technical Data
Incremental Interface
for Industrial Applications

Type Designations	RFC-48_ _-2 _ -5 _ -- _ _ - Supply voltage 5 VDC	RFC-48_ _-2 _ _-530- Supply voltage 24 VDC, TTL	RFC-48_ _-2 _ _-534- Supply voltage 24 VDC, HTL	
Electrical Data				
Outputs	$\begin{aligned} & \mathrm{A}+/ \mathrm{A}- \\ & \mathrm{B}+/ \mathrm{B}- \\ & \mathrm{Z}+/ \mathrm{Z} \end{aligned}$			
Level	RS-422, TTL-compatible	RS-422, TTL-compatible	HTL-compatible, Push-Pull	
Length Z-pulse	90 electrical, between 2 edges A / B			。
Pulses per revolution	1024, other resolutions see page 12			ppr
Counts per revolution (after quadrature)	4096			
Option Low Speed - Minimum edge separation - Minimum input frequency of counter input - Maximum operational speed	$\begin{aligned} & 8 \\ & 32 \\ & 1800 \end{aligned}$			$\mu \mathrm{s}$ kHz min^{-1}
Option High Speed - Minimum edge separation - Minimum input frequency of counter input - Maximum operational speed	$\begin{aligned} & 0.5 \\ & 500 \\ & 29000, \text { higher speeds on request } \end{aligned}$			$\mu \mathrm{s}$ kHz min^{-1}
Measuring range	360			-
Independent linearity	typical 0.5			$\pm \%$ FS
Repeatability	≤ 0.2			。
Hysteresis	≤ 0.7, lower hysteresis on request			-
Temperature error	0.375			$\pm \%$ FS
Supply voltage Ub	5 (4.5 ... 5.5)	24 (18 ... 30)	24 (18 ... 30)	VDC
Current consumption (w/o load)	typical 20	typical 10	typical 10	mA
Reverse voltage	yes, supply lines			
Short circuit protection	yes, all outputs vs. GND and supply voltage	yes, all outputs vs. GND	yes, all outputs vs. GND and	
Ohmic load at output	≥ 120 per channel A / B / Z	z 120 per channel A / B / Z	≥ 750 per channel A / B / Z	Ω
Insulation resistance (500 VDC)	≥ 10			$\mathrm{M} \Omega$
Cross-section cable	AWG 24, 0.25			mm^{2}
Environmental Data				
Operating temperature	$-40 \ldots+85(-25 \ldots+85$ with M12 connector)			${ }^{\circ} \mathrm{C}$
MTTF (DIN EN ISO 13849-1 parts count method, w/o load, wc)	183	122	122	years
Functional safety	If you need assistance in using our products in safety-related systems, please contact us			
EMC compatibility $C \epsilon$	EN 61000-4-2 Electrostatic discharge (ESD) EN 61000-4-3 Electromagnetic fields $10 \mathrm{~V} / \mathrm{m}$ EN 61000-4-4 Electrical fast transients (burs EN 61000-4-6 Conducted disturbances, ind EN 61000-4-8 Power frequency magnetic field EN 55016-2-3 Radiated disturbances	$8 \mathrm{kV}$ by RF fields 10 V eff. A/m		

Signal	Cable code 4 \qquad	Connector M12 code 531
Supply voltage Ub	WH	pin 1
GND	BN	pin 2
A-	GN	pin 3
A+	YE	pin 4
B-	GY	pin 5
B+	PK	pin 6
Z+	BU	pin 7
Z-	RD	pin 8

When the marking of the position marker is pointing away from the cable, the output is in the vicinity of the reference pulse (Z).
Rotational direction CW: A leads before B.

Siedle Group

Technical Data Incremental Interface

Electrical Data

Pulses per revolution	1024	512	256	128	ppr
Counts per revolution (after quadrature)	4096	2048	1024	512	

Option Low Speed

- Minimal edae separation
- Minimum input frequency of counter input | | 32 | 32 | 32^{\star} | 32^{\star} | ks |
| :--- | :--- | :--- | :--- | :--- | :--- |
| kHz | | | | | | - Maximum operational speed

$1800 \quad 3600 \quad 7200 \quad 14400$

Option High Speed
$\begin{array}{lllllll}\text { - Minimal edge separation } & 0,5 & & & & \\ \text { - Minimum input frequency of counter input } & 500 & 500 & 500^{\star} & 105^{\star} & \mathrm{kHz}\end{array}$ Maximum operational speed
${ }^{*}$) The requirement for the minimum input frequency of counter input is reduced at lower speed (see below charts).

Technical Data
Incremental Interface
for Mobile Applications

${ }^{*}$) The requirements for the minimum input frequencies of counter input is reduced at lower speed (see page 12).

Incremental connection

Technical Data SPI Interface

Type Designations	RFC-48_ _-2 _ _-8 _ _-_ _ _ Supply voltage 5 VDC	
Electrical Data		
Protocol	SPI	
Coding	Binary code	
Level SCLK, MOSI, /SS	TTL level (s. application note SPI protocol)	
Update rate internal	5	kHz
Resolution across 360°	14	bit
Measuring range	360	-
Independent linearity	≤ 0.5	$\pm \% \mathrm{FS}$
Repeatability	≤ 0.1	。
Hysteresis	≤ 0.1	-
Temperature error	± 0.625	\% FS
Supply voltage Ub	5 (4.5 ... 5.5)	VDC
Current consumption (w/o load)	typical 15	mA
Reverse voltage	yes, supply lines	
Short circuit protection	yes (vs. GND and supply voltage)	
Max. clock rate	400	kHz
Insulation resistance (500 VDC)	≥ 10	$\mathrm{M} \Omega$
Cross-section cable	AWG 26, 0.14	mm^{2}
Environmental Data		
Operating temperature	$-40 \ldots+85$	${ }^{\circ} \mathrm{C}$
MTTF (DIN EN ISO 13849-1 parts count method, w/o load, wc)	272	years
Functional safety	If you need assistance in using our products in safety-related systems,	
EMC compatibility $C E$	EN 61000-4-2 electrostatic discharge (ESD) $4 \mathrm{kV}, 8 \mathrm{kV}$ EN 61000-4-3 electromagnetic fields $10 \mathrm{~V} / \mathrm{m}$ EN 61000-4-4 electrical fast transients (Burst) 1 kV EN 61000-4-6 conducted disturbances, induced by RF fields 10 V eff. EN 61000-4-8 Power frequency magnetic fields $30 \mathrm{~A} / \mathrm{m}$ EN 55011/EN 55022/A1 Radiated disturbances class B	

Connection assignment	
Signal	Cable code 302
Supply voltage Ub	GN
GND	BN
MOSI / MISO	YE
SCLK	GY
SS (slave select)	WH

When the marking of the position marker is pointing towards the cable, the sensor output is near the electrical center position.

Siedle Group

Ordering
 Specifications -
 Digital Versions
 - SSI
 - Incremental
 - SPI

Ordering specifications

Preferred types printed in bold:

- Delivery time up to 25 pcs. within 10 working days
- Best low-volume pricing

Supply voltage Ub / Interface

4: Synchronous-Serial Interface (SSI)
5: Incremental Inrface A / B / Z
8: Serial Peripheral Interface (SPI)
Interface parameters for SSI Interface
11: $5 \mathrm{~V}(4.5$... 5.5 V$)$ Supply voltage, output RS422 comp., Gray code, rising cw $12: 5 \mathrm{~V}(4.5$... 5.5 V) Supply voltage, output RS422 comp., Gray code rising ccw 41: $24 \mathrm{~V}(18$... 30 V) Supply voltage, output RS422 comp., Gray code, rising cw 42: $24 \mathrm{~V}(18 \ldots 30 \mathrm{~V})$ Supply voltage, output RS422 comp., Gray code rising ccw

Interface parameters for Incremental Interface
Low Speed Mode (minimum edge separation $8 \mu \mathrm{~s}$)
$15: 5 \mathrm{~V}(4.5 \ldots 5.5 \mathrm{~V})$ supply voltage, output RS422, TTL- compatible 35: $24 \mathrm{~V}(18 \ldots 30 \mathrm{~V})$ supply voltage, output RS422, TTL-compatible 39: 24 V ($18 \ldots 30 \mathrm{~V}$) supply voltage, output HTL-compatible, Push-Pull 56: 12/24V (9 ... 34 V) supply voltage, output low side, open collector High Speed Mode (minimal edge separation $0,5 \mu \mathrm{~s}$)
10 : $5 \mathrm{~V}(4.5 \ldots 5.5 \mathrm{~V})$ supply voltage, output RS422, TTL-compatible 30: $24 \mathrm{~V}(18 \ldots 30 \mathrm{~V})$ supply voltage, output RS422, TTL-compatible 34: $24 \mathrm{~V}(18 \ldots 30 \mathrm{~V})$ supply voltage, output HTL-compatible, Push-Pull UVW signals instead of $A B Z$ signals for motor commutation on request Absolute position at Power On (Power on Burst) on request

Interface parameters for SPI Interface
31: $5 \mathrm{~V}(4.5 \ldots 5.5 \mathrm{~V})$ Supply voltage, Binary code, rising cw
Electrical connections
SSI / Incremental:
432: Cable 8 -pole, 1.0 m , shielded
436: Cable 8-pole, 3.0 m , shielded
440: Cable 8 -pole, 5.0 m , shielded
450: Cable 8-pole, 10.0 m , shielded
531: Connector M12x1 8-pole with cable, $L=0.15 \mathrm{~m}$, shielded Incremental Open Collector:
252: Cable 4-pole, 1 m , unshielded
256: Cable 4-pole, 3 m, unshielded
260: Cable 4-pole, 5 m, unshielded
270: Cable 4-pole, 10 m , unshielded
411: Lead wires $4 \times L=0.5 \mathrm{~m}$
551: Connector M12×14-pin with cable, $\mathrm{L}=0.15 \mathrm{~m}$, unshielded SPI
302: Cable 5-pole 1.0 m , shielded
Cable versions and and assembled connectors on request

Resolution SSI Interface
12: 12 bit
Other resolutions on request
Resolution Incremental Interface
12: $1024 \mathrm{ppr}-4096$ counts (after quadrature)
11: 512 ppr - 2048 counts (after quadrature)
10: 256 ppr - 1024 counts (after quadrature)
09: 128 ppr - 512 counts (after quadrature)
Other resolutions on request
Resolution SPI Interface
14: 14 bit

Interface

2: Digital Interface

Mechanical version

4801: Elongated hole
4802: Round hole mounting

Technical Data
 CANoper

Type Designations	$\text { RFC-48 _ - } 214-6 __{-}{ }^{-}$ CANopen	
Electrical Data		
Measured variables	Position and speed	
Measuring range	360	-
Measurement range speed	0 ... 25000	min-1
Number of channels	$1 / 2$ see ordering specifications	
Output signal / protocol	CANopen protocol to CiA DS-301 V4.2.0, Device profile DS-406 V3.2 Encoder Class C2, LSS services to CiA DS-305 V1.1.2	
Programmable parameter	Position, speed, cams, working areas, rotating direction, scale, offset, node-ID, baud rate	
Node-ID	1... 127 (default 127)	
Baud rate	$50 \ldots 1000$ see ordering specifications	kBaud
Resolution across 360° (position)	14	bit
Resolution speed	$360 / 2^{14} \approx 0,022$	\%/ms
Update rate	1	kHz
Independent linearity	≤ 0.5	$\pm \%$ FS
Repeatability	≤ 0.36	-
Hysteresis	≤ 0.36	-
Temperature error	0.2	$\pm \% \mathrm{FS}$
Supply voltage Ub	12/24 (8 ... 34)	VDC
Current consumption (w/o load)	< 100	mA
Reverse voltage	yes, supply lines	
Short circuit protection	yes, output vs.GND and supply voltage Ub (up to 40 VDC)	
Overvoltage protection	< 45 (permanent)	VDC
Insulation resistance (500 VDC)	≥ 10	$\mathrm{M} \Omega$
Cross-section cable	AWG 20, 0.5	mm^{2}
Bus termination internal	120, optionally, see ordering specifications	Ω
Environmental Data		
Operation temperature	$-40 \ldots+105(-25 \ldots+85$ with M12 connector)	${ }^{\circ} \mathrm{C}$
MTTF (DIN EN ISO 13849-1 parts count method, w/o load, wc)	one-channel: 71 / two-channel: 58	years
Functional safety	If you need assistance in using our products in safety-related systems, please contact us	
EMC compatibility	ISO TR 10605 Packaging and Handling + Component Test 8 kV ISO 11452-2 Radiated EM RF fields, Absorberhall $100 \mathrm{~V} / \mathrm{m}$ ISO 11452-5 Radiated EM RF fields, Stripline 200 V/m CISPR 25 Radiated emission class 3 ISO 7637-2 Pulse 1, 2a, 2b, 3a, 3b, 4 (24 V systems), 5 Level 5 ISO 7637-3 Transient transmission Level 4	

Connection assignment

Signal	Cable Code 2 _-	Connector M12 Code 511
CAN_SHLD	Shield	pin 1
Supply voltage Ub	WH	pin 2
GND	BN	pin 3
CAN_H	YE	$\operatorname{pin~4}$
CAN_L	GN	pin 5

Signal	Cable Code 432
CAN_SHLD	Shield
Supply voltage Ub	WH and RD
GND	BN and BU
CAN_H IN	YE
CAN_L IN	GN
CAN_H OUT	PK
CAN_L OUT	GY

When the marking of the position marker is pointing towards the cable, the sensor output is near the electrical center position.

Siedle Gruppe

Technical Data

© IO-Link

Type Designations	$\begin{aligned} & \text { RFC-48 _-- } 214-\text { A }_{--}-{ }_{---} \\ & \text {IO-Link } \end{aligned}$	
Electrical Data		
Measured variables	Position (other parameters such as speed on request)	
Measuring range	360	。
Number of channels	1	
Output signal / protocol	IO-Link Spec V1.1 to IEC 61131-9, Smart Sensor Profile	
Programmable parameter	Zero point offset, averaging, rotating direction	
Resolution across 360° (Position)	14	bit
Update rate	1	kHz
Transfer rate	COM 3 (230.4 kB)	
Frame type	2.2	
Minimum cycle time	1	ms
Independent linearity	0.5	$\pm \% \mathrm{FS}$
Repeatability	0.36	。
Hysteresis	0.36	-
Temperature error	0.2	$\pm \% \mathrm{FS}$
Supply voltage Ub	24 (18... 30)	VDC
Current consumption (w/o load)	< 100	mA
Reverse voltage	yes, supply lines	
Short circuit protection	yes, output vs. GND and Ub (up to 40 VDC)	
Overvoltage protection	< 35 (permanent)	VDC
Insulation resistance (500 VDC)	≥ 10	$\mathrm{M} \Omega$
Cross-section cable	AWG 20, 0.5 (4 pole) or AWG 24, 0.25 (8 pole)	mm^{2}
Environmental Data		
Operation temperature	$-40 \ldots+105(-25 \ldots+85$ with M12 connector)	${ }^{\circ} \mathrm{C}$
MTTF (DIN EN ISO 13849-1 parts count method, w/o load, wc)	single channel: 76	Jahre
Functional safety	If you need assistance in using our products in safety-related systems, please contact us	
EMC compatibility $C E$	EN 61000-4-2 Electrostatic discharge (ESD) 4 kV, 8 kV EN 61000-4-3 Electromagnetic fields $10 \mathrm{~V} / \mathrm{m}$ EN 61000-4-4 Electrical fast transients (burst) 2 kV EN 61000-4-6 Conducted disturbances, induced by RF fields 10 V eff. EN 55016-2-3 Radiated disturbances	

Connection assignment

Signal	Cable code 2 \qquad	Connector M12 code 551	CW	When the marking of the position marker is pointing
Supply voltage Ub	BN	pin 1		towards the cable, the sensor
Do not connect*	GN	pin 2		output is near the electrical
GND	WH	pin 3	0	center position.
C/Q	YE	pin 4		
*) Alternatively on GND				

Ordering
 Specifications

CANoper
© IO-Link
Ordering specifications
Preferred types printed in bold:

- Delivery time up to 25 pcs. within 10 working days
- Best low-volume pricing | Interface |
| :--- |
| 6: CANopen Interface |
| A: IO-Link |

novotechnik
 Siedle Group

Position Markers

novotechnik

Siedle Group

Position Markers

Z-RFC-P16

Screw position marker
M10 x 25 mm, similar DIN 933,
A2, bare, magnet potted

- max. permitted radial offset $\pm 3 \mathrm{~mm}$
- packaging unit:

1 pc. P/N 104203
25 pcs. P/N 104204

novotechnik

Siedle Group

Position Markers

Z-RFC-P03

Magnet for direct application onto
customer's shaft

- max. permitted radial offset
$\pm 1,5 \mathrm{~mm}$
- packaging unit:

1 pc. P/N 005658
50 pcs. P/N 056081

Z-RFC-S01 / Z-RFC-S02 / Z-RFC-S03
Shaft adapter for Z-RFC-P01 and Z-RFC-P02.
Fixation at position marker with locking pin

- Z-RFC-S01: Ø 6 mm, P/N 056206
- Z-RFC-S02: Ø 8 mm, P/N 056207
- Z-RFC-S03: Ø 10 mm, P/N 056208

Position Markers

Working distances (in mm)										
Interfaces	Z-RFC- P01	P02	P03	P04	P07	P08	P16	P17	P23	P30
Analog (voltage / current), SPI	0... 1.5	0... 4	0... 1.5	0... 4	0... 1.5	0... 4	$0 \ldots 4.5$	0... 2.2	0... 4	0... 1.5
Analog multi channel / redundant	$0 . . .1 .5$	0... 4	0 ... 1.5	0... 4	0... 1.5	0... 4	0... 4	0 ... 1.7	0... 4	01.5
SSI / Incremental	-	$0 . . .1 .4$	-	0 ... 1.4	-	0 ... 1.4	-	-	0 ... 1.4	-
CANopen / IO-Link single	-	2.3 ... 5	-	2.3 ... 5	-	2.3 ... 5	$0 . .4 .5$	$0 . . .2 .2$	2.3 ... 5	-
CANopen redundant	-	$1.9 \ldots 4.5$	-	$1.9 \ldots 4,5$	-	$1.9 \ldots 4.5$	0... 4	0 ... 1.7	$1.9 \ldots 4.5$	-

Mounting instructions Z-RFC-P03 / Z-RFC-P04

- In general, we recommend mounting on not magnetizable materials, otherwise the stated working distances can change
- If the shaft is magnetizable please keep sufficient distance
- When the magnet is mounted in the shaft, the shaft may not be magnetizable
- If the magnet is axially fixed on a magnetizable shaft the working distances reduces by approximately 20%

Lateral magnet offset

Lateral magnet offset will cause additional linearity error.
The angle error, which is caused by radial displacement of sensor and position marker depends on the used position marker or magnet type.

Additional error $\left({ }^{\circ}\right)$ at radial displacement

Interface	Z-RFC-P02 / P04 / P08 / P23			Z-RFC-P01 / P03 / P07 / P30			Z-RFC-P16			Z-RFC-P17		
	0.5 mm	1 mm	2 mm	0.5 mm	1 mm	2 mm	0.5 mm	1 mm	2 mm	0.5 mm	1 mm	2 mm
Analog single	0.4	1.1	3.5	1.4	3.7	-	0.7	1.3	3.3	1.3	2.6	-
SPI	0.4	1.1	3.5	1.4	3.7	-	0.7	1.3	3.3	1.3	2.6	-
CANopen / IO-Link single	0.4	1.1	3.5	-	-	-	0.7	1.3	3.3	1.3	2.6	-
Analog redundant	0.7	1.8	5.2	2.5	6.4	-	1.1	2.0	4.6	2.3	4.5	-
CANopen redundant	0.7	1.8	5.2	-	-	-	1.1	2.0	4.6	2.3	4.5	-
SSI / Incremental	0.4	0.7	2.2	-	-	-	-	-	-	-	-	-

Connector System M12

M12x1 mating female connector, 4-pin,

	$\begin{aligned} & 2=\text { White } \\ & 3=\text { Blue } \\ & 4=\text { Black } \end{aligned}$	M12x1 mating female connector, 4-pin, straight, A-coded, with molded cable, shielded, IP67, open ended		
		Connect	Plastic PA	
		Cable sh	$\begin{aligned} & \text { PUR; } \varnothing=m \\ & -25^{\circ} \mathrm{C} \ldots+80 \\ & -50^{\circ} \mathrm{C} \ldots+80 \end{aligned}$	6 mm , (moved) (fixed)
		Wires	PP, 0.34 mm	
		Length	Type	P/N
		2 m	EEM 33-32	005600
		5 m	EEM 33-62	005609
		10 m	EEM 33-97	005650

		M12x1 mating female connector, 8-pin, straight, A-coded, with molded cable, shielded, IP67, open ended		
		Connector housing	Plastic PA	
		Cable sheath	$\begin{aligned} & \text { PUR; } \varnothing=m \\ & -25^{\circ} \mathrm{C} . .+80 \\ & -50^{\circ} \mathrm{C} . .+80 \end{aligned}$	8 mm, (moved) (fixed)
		Wires	PP, $0.25 \mathrm{~mm}^{2}$	
		Length	Type	P/N
		2 m	EEM 33-86	005629
		5 m	EEM 33-90	005635
		10 m	EEM 33-92	005637
Pin assignment		M12x1 mating female connector, 4-pin, straight, A-coded, with coupling nut, screw termination, IP67, not shielded		
		Connector housing	$\begin{aligned} & \text { Plastic PBT } \\ & -25^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C} \end{aligned}$	
		For wire gauge	6... 8 mm , max. $0,75 \mathrm{~mm}^{2}$	
		Type EEM 33-88, P/	N 005633	

IP67

novotechnik

Siedle Group

Connector System M12

M12x1 mating female connector, 5-pin, straight, A-coded, with coupling nut, screw termination, IP67, shieldable, CAN bus

Connector housing	Metal $-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
For wire gauge	$6 . .8 \mathrm{~mm}$, max. $0.75 \mathrm{~mm}^{2}$

Type EEM 33-73, P/N 005645

M12x1 mating female connector, 5-pin, angled, A-coded, with coupling nut, screw termination, IP67, shieldable, CAN bus

Connector housing	Metal

For wire gauge $\quad 6 . .8 \mathrm{~mm}$, max. $0.75 \mathrm{~mm}^{2}$
Type EEM 33-75, P/N 005646
Is possible to turn and fix the contact carrier in 90° positions.

Connector System M12

Pin assignment	1 = n. c.
$3-4$	$2=n . c$.
00	3 n n. c .
0	$4=\square$ Widerstand
0 O	$5=-120 \Omega$

M12x1 terminating resistor, 5-pin, A-coded, IP67, 120Ω resistance, CAN-Bus
Connector housing PUR
Operating
temperature $\quad-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Type EEM 33-47, P/N 056147

M12x1 mating female connector, 5-pin, straight, A-coded, with molded cable, IP67, shielded, open ended, CAN-Bus

Connector housing	PUR	
Cable sheath	PUR $\varnothing=$ max. 7.2 mm,	
	$-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}(\mathrm{moved})$	
Wires	PP $2 \times 0.25 \mathrm{~mm}^{2}$	
	$+2 \times 0.34 \mathrm{~mm}^{2}$	
Length	Type	P/N
2 m	EEM 33-41	056141
5 m	EEM $33-42$	056142
10 m	EEM $33-43$	056143

C
Suited for applications in dragchains

Note: The protection class is valid only in locked position with its plugs. The application of these products in harsh environments must be checked in particular cases.

Siedle Group

Multifunctional
Measuring Device with Display

Series MAP4000

Ordering specifications								Number comparator relays 0 : none 2: 2 relays 4: 4 relays Analog output 0: no analog output 1: analog output present Interface 0 : ni interface 1: RS 232 2: RS 485						
M		P	-	4	0	1	0 -	0	0	0	0 -	1	0	1

novotechnik

Siedle Group

Connecting Options

on request

M12 connector

- Customized lengths
-3-, 4-, 6- and 8-pole versions
- Protection class IP68
- Ordering codes of standard versions
see ordering specifications

Tyco AMP Super Seal

- Pin- and bushing housing
- Customized lengths
- 3-, 4- and 6-pole versions
- Protection class IP67
- on request

Deutsch DTM 04

- Pin- and bushing housing
- Customized lengths
- 3-, 4- and 6-pole versions
- Protection class IP67
- on request

ITT Cannon Sure Seal connector

- customized lengths
- 3-, 4- and 6-pole versions
- protection class IP67
- on request

novotechnik

Siedle Group

Novotechnik
Messwertaufnehmer OHG
Postfach 4220
73745 Ostfildern (Ruit)
Horbstraße 12
73760 Ostfildern (Ruit)
Telefon +49 711 4489-0
Telefax +49 711 4489-118
info@novotechnik.de
www.novotechnik.de

© 09/2016
Subject to change.
回鲃 Printed in Germany.

Molex Mini Fit jr.

- Customized length and lead wires
-3-, 4- and 6-pole versions
- on request

Molex Mini Fit

- Customized length and lead wires
- 3-, 4-, 6- and 8-pole versions
- on request

