Frequenzumrichter der FR-A800-Serie

Die FR-A800-Serie ist Hochtechnologie pur. Diese Frequenzumrichter-Generation von Mitsubishi Electric vereinbart innovative Funktionen und zuverlässige Technologie mit maximaler Leistung, Ökonomie und Flexibilität. Neben vielen anderen Funktionen, bietet der Frequenzumrichter die

Möglichkeit der Vektorregelung auch in den Modi LD/SLD, einem Bremstransistor mit 100 \% ED bis 55 kW , dem Online-Autotuning für eine überragende Drehzahl-/Drehmomentgenauigkeit, exzellenten Gleichlaufeigenschaften mit einem Synchronmotor, einer integrierten

STO-Safety-Funktion und einer Vielzahl von digitalen und analogen Ein- und Ausgängen.
Verschiedene Frequenzumrichter der FR-A800-Serie werden mit einer separaten Stromrichtereinheit (FR-CC2) betrieben.

Antriebsaufgaben. Das System kann auf bis zu zwei Sensoren erweitert werden. Die Inbetriebnahme erfolgt einfach mittels Bedienanzeige, auch ohne Expertenwissen im Bereich Condition Monitoring.

Leistungsbereich:

FR-A820-E,0,4-90 kW, 200-240 V AC, FR-A840-E:0,4-280 kW, 380-500 V AC
FR-A842-E: 315-500 kW, 380-500 V AC (Modelle mit separater Stromrichtereinheit) FR-A860-E:0,75-220 kW, 525-600 V AC
FR-A862-E: 280-450 kW, 525-600 V AC
(Modelle mit separater Stromrichtereinheit)
FR-A870-E: $110 \mathrm{~kW}, 132 \mathrm{~kW}, 525-600 \mathrm{~V}$ AC
160 kW, $200 \mathrm{~kW}, 600-690$ V AC

FR-F840/842-E-SCM

Mit dem SCM Kit-DRIVES wird eine vorgefertigte ganzheitliche Condition Monitoring Lösung angeboten. Die Kombination aus den drei leistungsstarken Einzelbausteinen Frequenzumrichter, Bedienanzeige und einem vorkonfektionierten Schwingungssensor macht dies möglich. Der im Paket enthaltene Frequenzumrichter ist ihr Joker für alle

FR-A800-E

Die Frequenzumrichter FR-A800-E sind mit einer integrierten Ethernet-Schnittstelle mit $100 \mathrm{MBit} / \mathrm{s}$ ausgestattet. Diese ermöglicht eine einfache Integration in ein bestehendes Netzwerk und bietet standardmäßig die Kommunikation über Modbus ${ }^{\circledR}$ TCP/IP- oder CC-Link IE Field Basic-Netzwerke. Außerdem werden Mehrfachprotokolle unterstützt sowie die Umrichter-zu-Umrichter-Kommunikation. Aufgrund der standardmäßig vorhandenen Ethernet-Schnittstelle haben die Frequenzumrichter FR-A800-E im Auslieferzustand nur eine serielle Schnittstelle. Die Frequenzumrichter FR-A870-E haben eine kompakte Bauform und zusätzlich ist ein EMV-Filter sowie eine Zwischenkreisdrossel integriert.

FR-A800plus - Spezialisten auf ihrem Gebiet

Die FR-A800Plus-Serie erweitert die Frequenzumrichter der Serie mit optimierten Funktionen für spezielle Einsatzgebiete

FR-A800plus Crane (CRN)

Diese Frequenzumrichter verfügen über eine integrierte Kranfunktion. Durch die Verwendung der originalen Pendelregelung von MitsubishiElectric wird das Schwingen eines von einem Kran bewegten Objekts zum Zeitpunkt des Stillstands unterdrückt, ohne dass der Bediener eingreifen muss. Weitere Zusatzfunktionen sind Vermeidung von Lastschlupf sowie erweiterte Überwachungsfunktionen. Für die Plus-Funktionen stehen spezielle Parametereinstellungen zur Verfügung.

Leistungsbereich:

FR-A840-CRN: 0,4-280 kW, 380-500 V AC FR-A842-CRN: 315-500 kW, 380-500 V AC (Modell mit separater Stromrichtereinheit)

FR-A800plus Roll to Roll (R2R)

Die Frequenzumrichter FR-A800-R2R sind speziell für Wickelapplikationen entwickelt worden. Sie verfügen über verschiedene spezielle Funktionen, die eine stabile Auf- und Abwicklungssteuerung unabhängig voneinander ermöglichen. Dazu zählen u. a. die Berechnung des Wickeldurchmessers, die Drehzahlregelung über die Istposition der Tänzerrolle (Tänzerregelung) sowie die sensorlose Drehmomentregelung für konstante Zugkraft.

Leistungsbereich:

FR-A840-R2R: $0,4-280 \mathrm{~kW}, 380-500 \mathrm{~V} \mathrm{AC}$
FR-A842-R2R: 315-500 kW, 380-500 V AC (Modell mit separater Stromrichtereinheit)

FR-A800plus Liquid Cooled (LC)

Die Besonderheit dieser Frequenzumrichter ist die Flüssigkeitskühlung. Anstatt einer Kühlung mit Luft wird hier Flüssigkeit eingesetzt. Dadurch erschließen sich ganz neue Einsatzmöglichkeiten in Umgebungen, wo es ansonsten schwierig ist, die vom Frequenzumrichter abgegebene Wärme über die Luft abzuführen. Durch die Kühlung mit einer Flüssigkeit kommt außerdem ein kleineres Gehäuse zum Einsatz, da die Menge der im Gehäuse abgeführten Wärme geringer ist.

Leistungsbereich:

FR-A840-LC: 110-280 kW, 380-500 V AC
FR-A870-LC: $280 \mathrm{~kW}, 355 \mathrm{~kW}, 525-690$ V AC

Stromrichtereinheit FR-CC2-

zusammen mit den Frequenzumrichtern FR-A842/FR-A842-P und FR-A862 eingesetzt Die Trennung der Module erlaubt den flexiblen Aufbau unterschiedlicher Systeme wie

Parallelantriebe und gemeinsamer DC-BusSysteme. Das spart Kosten und minimiert den Platzbedarf für die Installation.

Technische Daten FR-A840-00023 bis -01160

Bestellangaben	Art.-Nr.	Ethernet Version (E2)
		Roll to Roll (R2R)
		Crane (CRN)
		Smart condition monitoring (SCM) Kit
		Leistungseinheit
		Steuerkarte (Ethernet)

297566	297567	297568	297569	297570	297571	297572	297573	297574	297575	297576	297577	297578	297579
296422	296423	296424	296465	296466	296467	296468	296469	296470	296471	296472	296473	296474	296475
409257	409258	409259	409260	409261	409322	409323	409324	409325	409326	409327	409328	409329	409330
314568	314569	314570	314571	314572	314573	314574	314585	314586	314587	314588	314589	314590	314591
-	-	-	-	-	-	-	-	-	-	-	307162	307163	307164
-	-	-	-	-	-	-	-	-	-	-	307202	307202	307202

Hinweise:
(1) Die angegebene Motornennleistung entspricht der maximal zulässigen Leistung für den Gebrauch eines 4 -Pol-Standardmotors von Mitsubishi Electric. 200% Überlasffähigkeit (ND) entspricht der Werkseinstellung.
(2) Die Prozentwerte der Überlastfähigkeit des Gerätes kennzeichnen das Verhältnis zum Nennausgangsstrom des Frequenzumrichters in der jeweiligen Betriebsart. Für eine wiederholte Anwendung ist es erforderlich, den Frequenzumrichter und den Motor solange abkühlen zu lassen, bis deren Betriebstemperatur unter den Wert sinkt, der bei 100% Last erreicht wird. Die Berechnung der Pausenzeiten erfolgt nach der Effektivstrom-Berechnungsmethode ($\left.{ }^{2} \mathrm{x} x\right)$. Dies setzt die Kenntnis des Arbeitsyyklus voraus.
(3) Die maximale Ausgangsspannung kann den Wert der Eingangsspannung nicht übersteigen. Die Einstellung der Ausgangsspannung kann über den gesamten Bereich der Eingangsspannung erfolgen.

Die Impulsspannung am Ausgang des Frequenzumrichters bleibt unverändert bei ca. $\sqrt{ } 2$ der Eingangsspannung.
(4) Die Eingangsnennleistung ist vom Impedanzwert (einschließlich Kabel und Eingangsdrossel) auf der Netzeingangsseite abhängig.
(5) FR-DU08: IP40 (außer für PU-Stecker)
(6) Wert für Überlastfähigkeit ND
(7) Das Bremsvermögen des Frequenzumrichters läst sich mit einem externen Bremswiderstand erhöhen. Verwenden Sie keine Widerstände, die kleiner als die angegebenen minimalen Werte sind.
(8) Der angegebene Eingangsnennstrom gilt bei der Ausgangsnennspannung. Der Eingangsnennstrom ist von der Impedanz (einschließlich Leitungen und Eingangsdrossel) auf der Netzeingangsseite abhängig.
(9) Die Werte geben die maximale Wärmeableitung an. Beachten Sie diese Werte bei der Konzeption des Schaltschranks.

Technische Daten FR-A840-01800 bis -06830

Hinweise:
(1) Die angegebene Motornennleistung entspricht der maximal zulässigen Leistung für den Gebrauch eines 4 -Pol-Standardmotors von Mitsubishi Electric. 200% Überlastfähigkeit (ND) entspricht der Werkseinstellung.
(2) Die Prozentwerte der Überlastfähigkeit des Gerätes kennzeichnen das Verhältnis zum Nennausgangsstrom des Frequenzumrichters in der jeweiligen Betriebsart. Für eine wiederholte Anwendung ist es erforderlich, den Frequenzumrichter und den Motor solange abkühlen zu lassen, bis deren Betriebstemperatur unter den Wert sinkt, der bei 100% Last erreicht wird. Die Berechnung der Pausenzeiten erfolgt nach der Effektivstrom-Berechnungsmethode (${ }^{2} \mathrm{x} \mathrm{xt}$). Dies setzt die Kenntnis des Arbeitsyyklus voraus.
(3) Die maximale Ausgangsspannung kann den Wert der Eingangsspannung nicht übersteigen. Die Einstellung der Ausgangsspannung kann über den gesamten Bereich der Eingangsspannung erfolgen. Die Impulsspannung am Ausgang des Frequenzumrichters bleibt unverändert bei ca. $\sqrt{ } 2$ der Eingangsspannung.
(4) Die Eingangssennleistung ist vom Impedanzwert (einschließlich Kabel und Eingangsdrossel) auf der Netzeingangsseite abhängig.
(5) FR-DU08:IP40 (außer für PU-Stecker)
(6) Wert für Überlastfähigkeit ND
(7) Das Bremsvermögen des Frequenzumrichters lässt sich mit einem externen Bremswiderstand erhöhen. Verwenden Sie keine Widerstände, die kleiner als die angegebenen minimalen Werte sind.
(8) Der angegebene Eingangsnennstrom gilt bei der Ausgangsnennspannung. Der Eingangsnennstrom ist von der Impedanz (einschließlich Leitungen und Eingangsdrossel) auf der Netzeingangsseite abhängig.
(9) Die Werte geben die maximale Wärmeableitung an. Beachten Sie diese Werte bei der Konzeption des Schaltschranks.

Technische Daten FR-A800

Technische Daten FR-A842-07700 bis -12120 und Stromrichtereinheit FR-CC2-H

Die Frequenzumrichter FR-A842 müssen zusammen mit einer Stromrichtereinheit FR-CC2 betrieben werden, die individuell bestellt werden muss.

Baureihe			FR-CC2-H $\square \mathrm{K}-60$						
			315	355	400	450	500	560	630
Ausgang	Motornennleistung	kW	315	355	400	450	500	560	630
	Überlastfähigkeit ${ }^{\text {® }}$		$200 \% 60 \mathrm{~s}, 250 \% 3 \mathrm{~s}$				$\begin{aligned} & 150 \% 60 \mathrm{~s}, \\ & 200 \% 3 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 120 \% 60 \mathrm{~s}, \\ & 150 \% 3 \mathrm{~s}, \end{aligned}$	$\begin{aligned} & 110 \% 60 \mathrm{~s}, \\ & 120 \% 3 \mathrm{~s} \end{aligned}$
	Spannung ${ }^{\text {(1) }}$		430-780V ${ }^{\text {© }}$						
	Drehmoment bei Bremsun		10% Drehmoment/100 \% ED						
Eingang	Anschlussspannung		3-phasig, 380-500 V AC, -15 \%/+10\%						
	Spannungs-/Frequenzber		$323-550 \mathrm{~V}$ AC bei $50 / 60 \mathrm{~Hz} \pm 5 \%$						
	Eingangsnennleistung ${ }^{\text {8 }}$	kVA	465	521	587	660	733	833	924
Sonstiges	Kühlung		Lüfterkühlung						
	Zwischenkreisdrossel		Eingebaut						
	Schutzart ${ }^{\text {® }}$		Offene Ausführung (IP00)						
	Gewicht	kg	210	213	282	285	288	293	294
	Abmessungen (BxHxT)	mm	$600 \times 1330 \times 440$		$600 \times 1580 \times 440$				
Bestellang		Art.-Nr.	274507	274508	274509	274510	274511	279637	279638

Hinweise:
(1) Die angegebene Motornennleistung entspricht der maximal zulässigen Leistung für den Gebrauch eines 4 -Pol-Standardmotors von Mitsubishi Electric. 200% Überlastähigkeit (ND) entspricht der Werkseinstellung.
(2) Die Ausgangsleistung bezieht sich auf eine Ausgangspannung von 440 V AC.
(3) Die Prozentwerte der Überlastfähigkeit des Gerätes kennzeichnen das Verhältnis vom Überlaststrom zum Nennausgangsstrom des Frequenzumrichters in der jeweiligen Betriebsart. Für eine wiederholte Anwendung ist es erforderlich, den Frequenzumrichter, die Stromrichtereinheit und den Motor solange abkühlen zu lassen, bis deren Betriebstemperatur unter den Wert sinkt, der bei 100% Last erreicht wird.
(4) Die maximale Ausgangsspannung kann den Wert der Eingangsspannung nicht übersteigen. Die Einstellung der Ausgangsspannung kann über den gesamten Bereich der Eingangsspannung erfolgen.

Die Impulsspannung am Ausgang des Frequenzumrichters bleibt unverändert bei ca. $\sqrt{ } 2$ der Eingangsspannung.
(5) FR-DU08: IP40 (außer für PU-Stecker)
(6) Die Werte geben die maximale Wärmeableitung an. Beachten Sie diese Werte bei der Konzeption des Schaltschranks.
(7) Übersteigt die Steuerspannung 480 V , ädern Sie in Pr. 977 den Wert für die Spannungsüberwachung.
(8) Die angegebene Eingangsnennleistung gilt beim angegebenen Gerätenennstrom. Die Eingangsnennleistung ist von der Impedanz (einschließlich Leitungen und Eingangsdrossel) auf der Netzeingangsseite abhängig.
(9) Die zulässige Phasen-Unsymmetrie für die Spannung beträgt 3% (Phasen-Unsymmetrie = (höchste Spannung zwischen den Leitern - durrchschnittliche Spannung zwischen den 3 Leitern)/durchschnittliche Spannung zwischen den 3 Leitern $\mathbf{x} 100$)
(10) Die Ausgangsspannung der Stromrichtereinheit hängt von der Eingangsspannung der Last ab. Die Impulsspannung am Ausgang der Stromrichtereinheit bleibt unverändert bei ca. $\sqrt{ } 2$ mal der Eingangsspannung.

Technische Daten FR-A842-09620 bis -12120- \square P und Stromrichtereinheit FR-CC2-H- $\square \mathbf{P}$

Baureihe			FR-A842- \square-2-60P					
			Zwei im Parallelbetrieb			Drei im Parallelbetrieb		
			09620	10940	12120	09620	10940	12120
Ausgang	Motornenn- leistung${ }^{10}$ kW \quad 150 \% Überlastfähigkeit (LD)		710	800	900	1065	1200	1350
			630	710	800	945	1065	1200
	$\begin{aligned} & \left.\begin{array}{l} \text { Geräte- } \\ \text { nennstrom } \quad \text { A } \end{array}\right) \end{aligned}$	I nenn	1386	1539	1750	2078	2309	2626
		I max. 60 s	1663	1846	2100	2493	2770	3151
		I max. 3 s	2079	2308	2625	3117	2463	2939
		I nenn	1232	1386	1539	1848	2078	2309
		I max. 60 s	1848	2079	2308	2772	3117	3463
		I max. 3 s	2464	2772	3078	3696	4156	4618
	Ausgangsleistung ${ }^{(2)}$		1056	1173	1334	1584	1759	2002
	leistung ${ }^{2}$ KVA ND		939	1056	1173	1409	1584	1759
	Überlast- fáhigkeit ${ }^{\text {3 }}$ LD ND		120% des Gerätenennstroms für 60 ; 150\% für 3 s (bei max. $50^{\circ} \mathrm{C}$ Umgebungstemperatur)					
			150% des	troms für	5 (bei max	ungstemp		
	Spannung ${ }^{\text {(1) }}$		3-phasig, 380-500 V					
	Frequenzbereich Hz		0,2-590					
	Steuerverfahren		U/f, erweiterte Stromvektorregelung, sensorlose Vektorregelung (RSV), Vektorregelung mit Drehzahlrückführung, sensorlose PM-Vektorregelung					
	Maximales Bremsmoment Generatorisch		10% Drehmoment/100\% ED					
Eingang	Gleichspannungsversorgung		430-780 V DC,					
	Steuerspannung		1-phasig, $380-500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ (2)					
	Steuerspannungsbereich		Frequenz $\pm 5 \%$, Spannung $\pm 10 \%$					
Sonstiges	Kühlung		Lüfterkühlung					
	Schutzart ${ }^{\text {® }}$		Offene Ausführung (IPOO)					
	$\begin{array}{ll} \begin{array}{l} \text { Max. Wärme- } \\ \text { ableitung }^{\circledR} \end{array} \quad \begin{array}{l} \text { LD } \\ \end{array}{ }^{\text {ND }} \end{array}$		11,7	13,2	15,5	17,5	19,8	23,3
			10,2	11,7	13,3	15,3	17,6	20
	Gewicht ${ }^{\text {® }}$ (${ }^{\text {a }}$		486	486	486	729	729	729
	Abmessungen (BxHxT) mm		$680 \times 1580 \times 440$			$680 \times 1580 \times 440$		
Bestellang		Art.-Nr.	314880	314881	314882	314880	314881	314882

Baureihe			FR-CC2-H $\square \mathrm{K}$-60P							
			Zwei im Parallelbetrieb				Drei im Parallelbetrieb			
			400	450	500	560	400	450	500	560
Ausgang	Motornennleistung	kW	$150 \% 60 \mathrm{~s}, 200 \% 3 \mathrm{~s}$		800	900	945	1065	1200	1350
	Überlastfähigkeit ${ }^{\text {® }}$									
	Spannung (1)		$430-780 \mathrm{~V}$ (1)							
	Drehmoment bei Bremsu		10 \% Drehmoment/100 \% ED							
Eingang	Anschlussspannung		3-phasig, 380-500 V AC							
	Spannungs-/Frequenzber		$323-550 \mathrm{~V} \mathrm{AC} \mathrm{bei} 50 / 60 \mathrm{~Hz} \pm 5 \%$							
	Eingangsnennleistung ${ }^{\text {® }}$	kVA	939	1056	1173	1334	1409	1584	1759	2002
Sonstiges	Kühlung		Lüfterkühlung							
	Zwischenkreisdrossel		Eingebaut							
	Max. Wärmeableitung ${ }^{\text {® }}$	kW	5,5 6,1Offene Ausführung (IP00)		6,8	7,9	8,2	9,2	10,3	11,9
	Schutzart ${ }^{\text {® }}$									
	Gewicht ${ }^{(2)}$	kg	564	570	576	586	846	855	864	879
	Abmessungen (BxHxT)	mm	$600 \times 1580 \times 440$							
Bestellan		Art.-Nr.	31488	314884	314905	314906	314883	314884	314905	314906

Hinweise:
(1) Die angegebene Motornennleistung entspricht der maximal zulässigen Leistung für den Gebrauch eines 4 -Pol-Standardmotors von Mitsubishi Electric. 200% Überlastfähigkeit (ND) entspricht der Werkseinstellung.
(2) Die Ausgangsleistung bezieht sich auf eine Ausgangsspannung von 440 VAC .
(3) Die Prozentwerte der Überlastfähigkeit des Gerätes kennzeichnen das Verhältnis vom Überlaststrom zum Nennausgangsstrom des Frequenzumrichters in der jeweiligen Betriebsart. Für eine wiederholte Anwendung ist es erforderlich, den Frequenzumrichter, die Stromrichtereinheit und den Motor solange abkühlen zu lassen, bis deren Betriebstemperatur unter den Wert sinkt, der bei 100% Last erreicht wird.
(4) Die maximale Ausgangsspannung kann den Wert der Eingangsspannung nicht übersteigen. Die Einstellung der Ausgangsspannung kann über den gesamten Bereich der Eingangsspannung erfolgen.

Die Impulsspannung am Ausgang des Frequenzumrichters bleibt unverändert bei ca. $\sqrt{ } 2$ der Eingangsspannung.
(5) FR-DU08: IP40 (außer für PU-Stecker)
(6) Die Werte geben die maximale Wärmeableitung an. Beachten Sie diese Werte bei der Konzeption des Schaltschranks.
(7) Übersteigt die Steuerspannung 480 V , ändern Sie in Pr. 977 den Wert für die Spannungsüberwachung.
(8) Gesamtgewicht aller Frequenzumrichter im Parallelmodus
(9) Die angegebene Eingangsnennleistung gilt beim angegebenen Gerätenennstrom. Die Eingangsnennleistung ist von der Impedanz (einschließlich Leitungen und Eingangsdrossel) auf der Netzeingangsseite abhängig.
(10) Die zulässige Phasen-Unsymmetrie für die Spannung beträgt 3% (Phasen-Unsymmetrie = (höchste Spannung zwischen den Leitern - durchschnittliche Spannung zwischen den 3 Leitern)/durchschnittliche Spannung zwischen den 3 Leitern x 100)
(11) Die Ausgangsspannung der Stromrichtereinheit hăngt von der Eingangsspannung der Last ab. Die Impulsspannung am Ausgang der Stromrichtereinheit bleibt unverändert bei ca. $\sqrt{ } 2$ mal der Eingangsspannung.
(12) Gesamtgewicht aller Master- und Slave-Stromrichtereinheiten im Parallelbetrieb.

Allgemeine technische Daten FR-A800

FR-A800			Beschreibung
Einstell-möglichkeiten	Frequenzauflösung	Analog	$0,015 \mathrm{~Hz} / 0-50 \mathrm{~Hz}$ (Anschlussklemme 2, 4: 0-10 V/12 Bit) $0,03 \mathrm{~Hz} / 0-50 \mathrm{~Hz}$ (Anschlusklemme 2, 4: 0-5V/11 Bit, $0-20 \mathrm{~mA} / 11$ bit, terminal 1:-10 $-+10 \mathrm{~V} / 12$ Bit) $0,06 \mathrm{~Hz} / 0-50 \mathrm{~Hz}$ (Anschlussklemme 1:0- $\pm 5 \mathrm{~V} / 11$ Bit)
		Digital	$0,01 \mathrm{~Hz}$
	Frequenzgenauigkeit		$\pm 0,2 \%$ der Maximalfrequenz (Temperaturbereich $25^{\circ} \pm 10^{\circ}$) bei Analogeingang; $\pm 0,01 \%$ der Maximalfrequenz bei Digitaleingang
	Spannungs-/Frequenzkennlinie		Basisfrequenz einstellbar zwischen 0 und 590 Hz ; Auswahl der Kennlinie zwischen konstantem Drehmoment, variablem Drehmoment oder flexibler 5-Punkt-U/f-Kennlinie
	Anlaufdrehmoment		$200 \% 0,3 \mathrm{~Hz}(0,4-3,7 \mathrm{kVA}), 150 \% 0,3 \mathrm{~Hz}$ (ab 5,5 kVA) bei sensorloser Vektorregelung und Vektorregelung
	Drehmomentanhebung		Manuelle Drehmomentanhebung
	Beschleunigungs-/Bremszeit		0 bis 3600 s getrennt einstellbar (Linearer oder S-förmiger Verlauf und Getriebespielkompensation sind frei wählbar)
	Beschleunigungs-/Bremskennlinie		Linearer oder S-förmiger Verlauf, frei wählbar
	DC-Bremsung		Betriebsfrequenz: 0-120 Hz; Dauer der Bremsung ($0-10 \mathrm{~s}$) und Höhe der Bremsspannung ($0-30 \%$) sind frei einstellbar. Die Aktivierung der DC-Bremsung ist auch über Digitaleingang möglich
	Strombegrenzung		Ansprechschwelle 0-220 \%, frei einstellbar, auch per Analogeingang
	Motorschutz		Elektronisches Motorschutzrelais (Nennstrom frei einstellbar)
	Drehmomentbegrenzung		Drehmomentbegrenzung von $0-400 \%$, frei einstellbar
Steuersignale für den Betrieb	Frequenzsollwerte	Analogeingang	Anschlussklemme 2, 4: $0-5 \mathrm{~V} D C, 0-10 \mathrm{VDC}, 0 / 4-20 \mathrm{~mA}$ Anschlussklemme $1: 0- \pm 5 \mathrm{VDC}, 0- \pm 10 \mathrm{VDC}$
		Digital	4 -stelliger BCD- oder 16-Bit-Binärcode bei Verwendung einer Bedieneinheit oder Optionskarte (FR-A8AX)
	Startsignal		Individuelle Auswahl zwischen Rechts- und Linkslauf. Als Starteingang kann ein selbsthaltendes Signal gewählt werden.
	$\begin{array}{cc} & \text { Allgemein } \\ & \text { Impulseingang } \\ \text { Eingangssignale } \\ & \\ & \text { Betriebszustände }\end{array}$		Drehzahlwahl (drei Drehzahlen), 2. Parametersatz, Funktionszuweisung Klemme 4, Tippbetrieb, Motorumschaltung auf Netzbetrieb © ${ }^{\oplus}$, automatischer Wiederanlauf ${ }^{(}$, fliegender Start ${ }^{\oplus}$, Reglersperre, Selbsthaltung des Startsignals, Startsignal Rechtslauf, Startsignal Linkslauf, Frequenzumrichter zurücksetzen Die Funktionszuweisung der Eingangsklemmen erfolgt über die Parameter 178 bis 189.
			$100 \mathrm{kBit} / \mathrm{s}$
			Einstellung von maximaler/minimaler Frequenz, Drehzahl-/Geschwindigkeitsvorwahl, Beschleunigungs-/Bremskennlinie, externer Motorschutz, DC-Bremsung, Startfrequenz, Tippbetrieb, Reglersperre (MRS), Strombegrenzung, Zwischenkreisführung der Ausgangsfrequenz, Bremsung mit erhöhter Erregung, DC-Einspeisung ${ }^{(4)}$, Frequenzsprung, Drehrichtungsumkehr, Automatischer Wiederanlauf nach Netzausfall, Motorumschaltung auf Netzbetrieb, Digitales Motorpotentiometer, automatische Beschleunigung/Verzögerung, automatische Einstellhilfe, Fortsetzung des Betriebs nach einem Netzausfall, Wahl der Taktfrequenz, intelligente Ausgangsstromüberwachung, Reversierverbot, Betriebsartenwahl, Schlupfkompensation, Droop-Funktion, lastabhängige Frequenzumschaltung, Vibrationsunterdrückung, Traverse-Funktion, Auto-Tuning, Selbsteinstellung der Betriebsmotordaten, automatische Verstärkungseinstellung, Maschinenanalyse ${ }^{(© \oplus}$, serielle Datenkommunikation (RS485), PID-Regelung, Vorfüllmodus, Tänzerregelung, Steuerung des Kühlventilators, Stoppmethode (Verzögerung bis Stopp/Austrudeln), Stoppmethode bei Netzausfall © ©, Kontaktstopp, SPS-Funktionalität, Standzeitüberwachung, Wartungsintervall-Alarm, Strommittelwert, Einstellung der Überlastähigkeit, Lageregelung ${ }^{(1)}$, Drehzahlregelung, Drehmomentregelung, Positionsregelung, Vorerregung, Drehmomentbegrenzung, Testbetrieb, Versorgung des Steuerkreises durch separate 24-V-Versorgungsspannung, Funktion,_Sicher abgeschaltetes Moment (STO)", Pendelregelung
	Ausgangssignal	Ausgangssignal Open-Collector- Ausgang (5 Klemmen) Relais-Ausgang (2 Klemmen)	Motorlauf, Frequenz-Soll-/Istwertvergleich, Kurzzeitiger Netzausfall (Unterspannung) ${ }^{\oplus}$, Überlastwarnung, Frequenzerkennung, Alarme, Ausgabe des Alarmcodes (4 Bits über Open-Collector-Ausgänge)
Anzeige	Mit Messgerät	Stromausgang	Max. $20 \mathrm{mADC}: 1$ Klemme (Ausgabe eines Stromes) Die an der Klemme CA ausgegebene Größe kann durch die Einstellung von Pr. 54,_Ausgabe FM/CA-Klemme" festgelegt werden.
		Spannungsausgang	Max. $\pm 10 \mathrm{~V}$ DC: 1 Klemme (Ausgabe einer Spannung) Die an der Klemme AM ausgegebene Größe kann durch die Einstellung von Pr. 158 „Ausgabe AM-Klemme" festgelegt werden.
	Aufder Bedieneinheit (FR-DU08)	Betriebszustände	Ausgangsfrequenz, Ausgangsstrom, Ausgangsspannung, Frequenzsollwerte Die angezeigte Größe kann durch die Einstellung von Pr. 52 „Anzeige der Bedieneinheit" festgelegt werden.
		Alarmanzeige	Nach dem Ansprechen einer Schutzfunktion erfolgt die Anzeige einer Fehlermeldung. Es werden Ausgangsspannung, Ausgangsstrom, Frequenz, kumulierte Betriebszeit, Jahr, Monat, Datum, Zeit unmittelbar vor dem Auslösen der Schutzfunktion und die letzten 8 Alarme gespeichert.
Schutz	Funktionen		Überstrom (während der Beschleunigung, Verzögerung, bei konstanter Geschwindigkeit oder im Stillstand), Überspannung (während der Beschleunigung, Verzögerung, bei konstanter Geschwindigkeit oder im Stillstand), Thermoschutz Frequenzumrichter, Thermoschutz Motor, Überhitzung Kühlkörper, kurzzeitiger Netzausfall ${ }^{(}$, Unterspannung ${ }^{\oplus}$, Eingangsphasenausfall ${ }^{(2 \oplus}$, Überlast Motor, fehlende Synchronisation ${ }^{(2)}$, fehlerhafter Bremstransistor ${ }^{\circledR}$, Kurzschluss im Frequenzumrichterausgang, offene Phase am Ausgang, Auslösung des externen Thermoschutzes ${ }^{(2)}$, PTC-Betrieb ${ }^{(2)}$ Optionsfehler, Fehler der Kommunikationsoption, PU-Verbindungsfehler, Überschreitung der Wiederholversuche ${ }^{2}$, Fehler beim Speichern von Parametern, CPU-Fehler, Kurzschluss in der Verbindung zur Bedieneinheit/Kurzschluss der Ausgangsspannung der 2. seriellen Schnittstelle, Kurzschluss der 24-V-DC-Ausgangsspannung, Grenzwert des Ausgangsstroms überschritten ${ }^{(2)}$, Fehler der Einschaltstrombegrenzung ${ }^{\circledR}$, Kommunikationsfehler (Frequenzumrichter), Fehler Analogeingang, Fehler bei Kommunikation über die USB-Schnittstelle, Fehler im Sicherheitskreis, Drehzahlüberschreitung ${ }^{(2)}$, Drehzahlabweichung zu groß ${ }^{(1)}$, Impulsgeber-Fehler (kein Signal) ${ }^{(1)}{ }^{2}$, Positionsabweichung zu groß ${ }^{(1)}{ }^{(2)}$, Fehler bei der Bremssequenz ${ }^{(2)}$, Phasenfehler am Impulsgeber ${ }^{(1) 2}$, Stromsollwert-Verlust ${ }^{(2)}$, Fehler Vorfüllmodus ${ }^{(2)}$, Signalfehler PID-Regelung ${ }^{(2)}$, Optionsfehler, keine Verzögerung bei Drehrichtungsumkehr ${ }^{(2)}$, interner Schaltkreisfehler, interne Übertemperatur ${ }^{\text {(34) }}$
	Warnungen		Ventilatorfehler, Motor-Kippschutz durch Überstrom, Motor-Kippschutz durch Überspannung, Überlastung Bremswiderstand ${ }^{(2 \oplus}$ (1) Voralarm Thermoschutz, PU-Stopp, Drehzahlbegrenzung hat angesprochen ${ }^{(2)}$, Kopierfehler Parameter, Sicher abgeschaltetes Moment (STO), PLe/ Sil3, Signalausgang für Wartung ${ }^{(2)(4)}$, Wartungstimer 1 bis $3^{(2)}{ }^{(2)}$, USB-Host, Fehler bei Referenzpunktfahrt (fehlerhafte Einstellung, nicht abgeschlossen, falsch ausgewählt) ${ }^{2}$, Bedieneinheit verriegett ${ }^{(2)}$, Passwortschutz ${ }^{(2)}$, Schreibfehler Parameter, Kopierfehler, Betrieb mit externer Versorgungsspannung (24V), Fehler der internen Kühlluftzirkulation ${ }^{(3)}$
Sonstiges	Umgebungstemperatur		$-10^{\circ} \mathrm{C}$ bis $+50^{\circ} \mathrm{C}$
			$-20^{\circ} \mathrm{C}$ bis $+65^{\circ} \mathrm{C}$

Hinweise:
(1) Nur mit Option FR-A8AP
(2) In der Werkseinstellung des Frequenzumrichters ist diese Schutzfunktion deaktiviert.
(3) Für sensorlose PM-Vektorregelung
(4) Nicht für A842
(5) Nur für A842
(6) Nicht für A860
(7) Nur für A860
(8) Nur für kurze Zeit zulässig (z. B. beim Transport)

Allgemeine technische Daten FR-CC2

FR-CC20		Beschreibung
Eingangssignale (drei Klemmen)		Externer Thermoschalter, Stromrichtereinheit zurücksetzen Die Funktionszuweisung der Eingangsklemmen erfolgt über Pr. 178, Pr. 187 und Pr. 189.
Betriebsfunktionen		Überhitzungsschutz, DC-Bremsung, Automatischer Wiederanlauf nach Netzausfall, Wiederanlauf nach Ansprechen einer Schutzfunktion, serielle Datenkommunikation (RS485), Standzeitüberwachung, Wartungsintervall-Alarm, Betrieb mit externer Versorgungsspannung (24V)
Ausgangssignal, Open-Collector-Ausgang (fünf Klemmen) Relais-Ausgang (eine Klemme)		Freigabe des Frequenzumrichterbetriebs (positive Logik, negative Logik), kurzzeitiger Netzausfall (Unterspannung), Frequenzumrichter zurücksetzen, Ventilatorfehler, Alarm Die Funktionszuweisung der Ausgangsklemmen erfolgt über Pr. 190 bis Pr. 195.
Bedieneinheit (FR-DU08)	Betriebszustände	Ausgangsspannung der Stromrichtereinheit, Eingangsstrom, Auslastung des elektr. Motorschutzes Die Auswahl der Anzeige erfolgt über Pr. 774 bis Pr. 776 „ 1 . bis 3 . Anzeigeauswahl der Bedieneinheit".
	Schutz	Nach dem Ansprechen einer Schutzfunktion erfolgt die Anzeige einer Fehlermeldung. Es werden Ausgangsspannung, Eingangsstrom, Auslastung des elektr. Motorschutzes, kumulierte Betriebszeit, Jahr, Monat, Datum, Zeit unmittelbar vor dem Auslösen der Schutzfunktion und die letzten 8 Alarme gespeichert.
Schutz	Funktionen	Überstrom, Überspannung, Thermoschutz Stromrichtereinheit (elektr. Motorschutz), Überhitzung Kühlkörper, kurzzeitiger Netzausfall, Unterspannung, Eingangsphasenausfall ${ }^{3}$, externer Thermoschalterbetrieb, PU-Verbindungsfehler ${ }^{3}$, Überschreitung der Wiederholversuche ${ }^{\text {® }}$, Fehler beim Speichern von Parametern, CPU-Fehler, Kurzschluss der 24-V-DC-Ausgangsspannung, Schaltkreisfehler der Einschaltstrombegrenzung, Kommunikationsfehler (Frequenzumrichter), Optionsfehler, Kurzschluss der Spannungsversorgung für die Bedieneinheit, Kurzschluss der Ausgangsspannung der 2. seriellen Schnittstelle, interner Schaltkreisfehler
	Warnungen	Ventilatorfehler, Voralarm elektronischer Motorschutz, Wartungstimer 1 bis $3{ }^{3}$, Bedieneinheit verriegelt ${ }^{\circledR}$, Passwortschutz ${ }^{\circledR}$, Schreibfehler Parameter, Kopierfehler, Kurzschluss der 24-V-DC-Ausgangsspannung
Umgebung	Umgebungstemperatur	FR-CC2-H315K-H560K: $-10^{\circ} \mathrm{C}$ bis $+50^{\circ} \mathrm{C}$ (keine Eisbildung im Gerät) FR-CC2-H63OK: $-10^{\circ} \mathrm{C}$ bis $+40^{\circ} \mathrm{C}$ (keine Eisbildung im Gerät
	Zulässige relative Lufffeuchtigkeit	Mit Platinenschutzlackierung gemäß IEC60721-3-3 32: max. 95% (keine Kondensatbildung) Ohne Platinenschutzlackierung: max. 90% (keine Kondensatbildung)
	Lagertemperatur (1)	$-20-+65^{\circ} \mathrm{C}$
	Atmosphäre	Nur für Innenräume (keine aggressiven Gase, Ölnebel, staub- und schmutzfreie Aufstellung)
	Aufstellhöhe/Vibrationsfestigkeit	Max. $1.000 \mathrm{müber} \mathrm{NN}$., max. $2,9 \mathrm{~m} / \mathrm{s}^{2}{ }^{(2)}$ von 10 bis 55 Hz (in X-, Y- und Z-Richtung)

Hinweise:
(1) Nur für kurze Zeit zulässig (z. B. beim Transport)
(2) Bei Installation in einer Höhe von 1000 bis maximal 2500 m über N.N. nimmt die Ausgangsleistung um 3% pro 500 m ab.
(3) In der Werkseinstellung sind diese Funktionen deaktiviert.

Blockschaltbild FR-A800

Blockschaltbild FR-A842

Blockschaltbild FR-CC2

Belegung der Leistungsklemmen

Funktion	Klemme	Bezeichnung	Beschreibung
Leistungsanschluisse	L1, L2, L3	Netzspannungsanschluss	Netzspannungsversorgung des Frequenzumrichters ($380-480 \mathrm{~V} \mathrm{AC} ,50 / 60 \mathrm{~Hz}$)
	L11, L21	Sep. Steuerspannungsanschluss	Zur separaten Spannungsversorgung des Steuerkreises ist die Netzspannung an L11/L21 anzuschließen (und die Brücken L1 und L2 zu öfnen).
	P/+, N/-	Anschluss für Frequenzumrichter	Anschluss an die Klemmen P/+ und $\mathrm{N} /$-des Frequenzumrichters
	$\stackrel{1}{=}$	PE	Schutzleiteranschluss des Frequenzumrichters

Funktion	Klemme	Bezeichnung	Beschreibung
Steueranschlüsse (programmierbar)	STF	Startsignal für Rechtslauf	Der Motor dreht im Rechtslauf, wenn an Klemme STF ein Signal anliegt.
	STR	Startsignal für Linkslauf	Der Motor dreht im Linkslauf, wenn an Klemme STR ein Signal anliegt.
	STOP	Selbsthaltung des Startsignals	Die Startsignale sind selbsthaltend, wenn an Klemme STOP ein Signal anliegt.
	RH, RM, RL	Geschwindigkeitsvorwahl	Vorwahl von 15 verschiedenen Ausgangsfrequenzen
	JOG	Tipp-Betrieb	DerTipp-Betrieb wird durch ein Signal an der JOG-Klemme ausgewählt (Werkseinstellung). Die Startsignale STF und STR bestimmen die Drehrichtung.
		Impulseingang	Die JOG-Klemme kann als Impulseingang verwendet werden. Dazu muss die Einstellung des Pr. 291 verändert werden.
	RT	Zweiter Parametersatz	Durch ein Signal an der RT-Klemme kann ein zweiter Parametersatz angewählt werden.
	MRS	Reglersperre	Die Reglersperre stoppt die Ausgangsfrequenz ohne Berücksichtigung der Verzögerungszeit.
	RES	RESET-Eingang	Das Rücksetzen des Frequenzumrichters nach Ansprechen einer Schutzfunktion erfolgt durch ein Signal an der RES-Klemme ($\mathrm{t}>0,1 \mathrm{~s}$).
	$\mathrm{OH}^{(1)}$	Externer Thermoschalter	Die Klemme OH dient zum Anschluss eines externen Motorschutzschalters oder eines im Motor integrierten Motorschutzes. Spricht der Motorschutz an, wird der Frequenzumrichterausgang abgeschaltet und das Alarmsignal E.OHT ausgegeben.
	RDI ${ }^{\circ}$	Kontakteingang	In der Werkseinstellung ist der Klemme keine Funktion zugewiesen. Die Funktionszuweisung erfolgt mit Pr. 178.
		Freigabe Strom-Sollwert	Die Freigabe der Sollwertvorgabe von 0/4-20 mA an Klemme 4 erfolgt durch Signalvorgabe an Klemme AU.
	AU	PTC-Eingang	Zum Anschluss des PTC-Thermofühlers muss der AU-Klemme das PTC-Signal zugewiesen werden und der Schiebeschalter auf der Steuerplatine in Position PTC gebracht werden.
	CS	Automatischer Wiederanlauf nach Netzausfall	Wird an Klemme CS ein Signal angelegt, startet der Frequenzumrichter nach einem Netzausfall automatisch.
Bezugspunkte	SD	Bezugspunkt (OV) für die Klemme PC (24V)	In negativer Logik dient die SD-Klemme als gemeinsamer Bezugspunkt für die Schalteingänge. In positiver Logik muss bei einer Ansteuerung über Open-Collector-Transistoren (z. B. SPS) der Bezugspunkt der Spannungsquelle mit der SD-Klemme verbunden werden. Dadurch werden Funktionstörungen durch Fehlerströme verhindert. Die SD-Klemme ist der Bezugspunkt für die 24-V-Spannungsquelle an Klemme PC sowie für das externe $24-$-Vetzteil an Klemme +24 . Diese Klemme ist von den Klemmen 5 und SE isoliert.
	PC	24 V DC-Ausgang	In negativer Logik muss bei einer Ansteuerung über Open-Collector-Transistoren (z. B. SPS) der Bezugspunkt der Spannungsquelle mit der PC-Klemme verbunden werden. Dadurch werden Funktionstörungen durch Fehlerströme verhindert. In positiver Logik dient die PC-Klemme als gemeinsamer Bezugspunkt für die Schalteingänge. Ausgang zur Spannungsversorgung 24V DC $0,1 \mathrm{~A}$
	+24	Externe Spannungseinspeisung 24V	Zum Anschluss eines externen 24-V-Netzteils. Liegt an dieser Klemme eine externe DC-Spannung mit 24 V an, wird der Steuerkreis weiterhin mit Betriebsspannung versorgt, auch wenn der Leistungskreis ausgeschaltet ist.
Sollwertvorgabe	10 E	Spannungsausgang für Potentiometeranschluss	Ausgangsspannung 10V DC. Der max. Ausgangsstrom beträgt 10 mA . Empfohlenes Potentiometer: $1 \mathrm{k} \Omega, 2 \mathrm{~W}$ linear
	10		Ausgangsspannung 5 V DC. Der max. Ausgangsstrom beträgt 10 mA . Empfohlenes Potentiometer: $1 \mathrm{k} \mathrm{\Omega}, 2 \mathrm{~W}$ linear
	2	Eingang für Frequenz-Sollwertsignal	Das Sollwertsignal $0-5 \mathrm{~V}$ oder $0-10 \mathrm{~V}, 0 / 4-20 \mathrm{~mA}$ wird an diese Klemme angelegt. Über Parameter 73 kann zwischen Spannungs- und Stromsollwert gewechselt werden. Der Eingangswiderstand beträgt $10 \mathrm{k} \Omega$.
	5	Sollwertsignal und Analogsignale	Klemme 5 stellt den Bezugspunkt für alle analogen Sollwertgrößen sowie für die analogen Ausgangssignale AM und CA dar. Die Klemme ist vom Bezugspotential des Digitalkreises (SD) isoliert und sollte nicht geerdet werden.
	1	Zusätzlicher Eingang für Frequenz-Sollwertsignal $0- \pm 5(10) V D C$	Ein zusätliches Spannungs-Sollwertsignal von $0- \pm 5(10)$ V DC kann an diese Klemme angelegt werden. Der Spannungsbereich ist auf $0- \pm 10 \mathrm{~V} D$ voreingestellt. Der Eingangswiderstand beträgt $10 \mathrm{k} \Omega$.
	4	Eingang für Sollwertsignal	Das Sollwertsignal $0 / 4-20 \mathrm{~mA}$ oder $0-10 \mathrm{~V}$ wird an diese Klemme angelegt. Über Parameter 267 kann zwischen Spannungs- und Stromsollwert gewechselt werden. Der Eingangswiderstand beträgt 250Ω. Die Freigabe der Strom-Sollwertvorgabe erfolgt über die Klemmenfunktion AU.
Signalausgänge (programmierbar)	A1, B1, C1	Potentialfreier Relaisausgang 1 (Alarm)	Die Alarmausgabe erfolgt über Relaiskontakte. Gezeichnet ist der Normalbetrieb und der spannungslose Zustand. Wird die Schutzfunktion aktiviert, zieht das Relais an. Die Kontaktleistung beträgt 230 V AC/0,3 A oder 30 V DC/0,3 A.
	A2, B2, C2	Potentialfreier Relaisausgang 2	Als Ausgangstreiber ist jedes der 42 möglichen Ausgangssignale wählbar. Die Kontaktleistung beträgt $230 \mathrm{~V} \mathrm{AC} / 0,3 \mathrm{~A}$ oder $30 \mathrm{~V} \mathrm{DC} / 0,3 \mathrm{~A}$.
	RUN	Signalausgang für Motorlauf	Der Ausgang ist durchgeschaltet, wenn die Ausgangsfrequenz höher als die Startfrequenz des Frequenzumrichters ist. Wird keine Frequenz ausgegeben oder ist die DC-Bremsung aktiv, ist der Ausgang gesperrt.
	RDA ${ }^{(1)}$	Freigabe des Frequenzumrichterbetriebs (Schließer)	Der Kontakt ist bei Betriebsbereitschaft der Stromrichtereinheit geschlossen.
	RDB ${ }^{\text {(1) }}$	Freigabe des Frequenzumrichterbetriebs (Offner)	Der Kontakt ist bei einem Fehler oder während des Zurücksetzens der Stromrichtereinheit geöffnet.
	RSO®	Reset für Umrichter (Schließerkontakt)	Der Kontakt ist während des Zurücksetzens der Stromrichtereinheit geschlossen.
	SU	Signalausgang für Frequenz-Soll-/lstwertvergleich	Der SU-Ausgang dient der Überwachung von Frequenz-Sollwert und Frequenz-stwert. Der Ausgang wird durchgeschaltet, sobald sich der Frequenz-Istwert (Ausgangsfrequenz des Frequenzumrichters) dem Frequenz-Sollwert (vorgegeben durch das Sollwertsignal) innerhalb eines voreingestellten Toleranzbereiches angeglichen hat.
	IPF	Signalausgang für kurzzeitigen Netzausfall	Bei einer kurzzeitigen Netzunterbrechung im Zeitraum von $15 \mathrm{~ms} \leq$ tPF $\leq 100 \mathrm{~ms}$ oder bei einer Unterspannung wird der Ausgang durchgeschaltet.
	FAN ${ }^{\text {® }}$	Fehlerausgabe Kühlventilator	Der Ausgang ist bei einem Ventilatorfehler durchgeschaltet.
	0L	Signalausgang für Überlastalarm	Der OL-Ausgang ist durchgeschaltet, wenn der Ausgangsstrom des Frequenzumrichters die in Parameter 22 voreingestellte Stromgrenze überschreitet und der Abschaltschutz Überstrom aktiviert wurde. Liegt der Ausgangsstrom des Frequenzumrichters unterhalb der in Parameter 22 eingestellten Stromgrenze, ist das Signal am OL-Ausgang gesperrt.
	FU	Signalausgang zur Überwachung der Ausgangsfrequenz	Der Ausgang ist durchgeschaltet, sobald die Ausgangsfrequenz die in Parameter 42 (oder 43) vorgegebene Frequenz überschreitet. Andernfalls ist der FU-Ausgang gespert.
	SE	Ausgangsspannung für Signalausgänge	An diese Klemme wird die Spannung angeschlossen, die über die Open-Collector-Ausgänge RUN, SU, OL, IPF und FU geschaltet wird.
	CA	Analoger Stromausgang	Eine von 18 Anzeigefunktionen kann ausgewählt Ausgabe: Ausgangsfrequenz (Werkseinstellung), werden, z.B. externe Frequenzanzeige. CA- und AM- Lastwiderstand: $200 \Omega-450 \Omega$, Ausgangsstrom: $0-20 \mathrm{~mA}$
	AM	Analogausgang $0-10 \mathrm{~V}$ DC (1 mA)	
Schnittstelle	-	PU-Schnittstelle	Die PU-Schnitstselle zum Anschluss der Bedieneinheit kann als RS485-Schnittstelle genutzt werden. E/A-Standard: RS485, Multi-Drop-Betrieb: max. 1152 Bit/s (maximale Leitungslänge: 500 m)
	-	RS485-Schnittstelle (über RS485-Klemme)	Kommunikation über RS485; E/A-Standard: RS485, Multi-Drop-Betrieb: max. 1152 Bit/s (maximale Leitungslänge: 500 m)
	-	2 USB-Anschlüsse (gemäß USB1.1/USB2.0)	Typ-A-Buchse: Bei Anschluss eines USB-Speichergeräts werden das Kopieren von Parametern, das Herunterladen eines SPS-Codes und die TraceFunktion unterstützt. Mini-B-Buchse: Durch Anschluss eines Personal Computers ist der Betrieb des Frequenzumrichters über den FR Configurator2 möglich.
SafetyAnschlüsse	S1, S2	Safety-Eingänge	Wird die Funktion „Sicher abgeschaltetes Moment (STO)" nicht verwendet, dürfen die Brücken zwischen den Klemmen S1-PC, S2-PC und SIC-SD nicht entfernt werden, da sonst kein Betrieb des Frequenzumrichters möglich ist.
	SIC	Referenzpotential für Sicherheitseingänge	
	So	Safety-Monitorausgang	
	SOC	Bezugspunkt Überwachungsausgang „Sicher abgeschaltetes Moment (STO)"	

