Frequenzumrichter der FR-F800-Serie

Der Frequenzumrichter FR-F800-E ist für Anwendungen mit Ventilatoren und Pumpen prädestiniert und mit integrierter SPS sowie integrierter Ethernet-Schnittstelle mit 100 MBit/s ausgestattet. Diese Schnittstelle ermöglicht eine einfache Integration in ein bestehendes Netzwerk und bietet standardmäßig die Kommunikation über Modbus ${ }^{\circledR}$ TCP/IP- oder CC-Link IE Field

Basic-Netzwerke. Es können über die eingebaute Ethernet Schnittstelle bis zu 3 unterschiedlich Protokolle parallel kommunizieren. Dies ermöglicht auch die Umrichter-zu-Umrichter-Kommunikation ohne Master. Aufgrund der standardmäßig vorhandenen Ethernet-Schnittstelle hat der Frequenzumrichter FR-F800-E im Auslieferzustand nur eine serielle Schnittstelle.

Die Frequenzumrichter FR-F842-Serie werden mit einer separaten Stromrichtereinheit (FR-CC2) betrieben.

FR-F846-E

Die Serie FR-F846 deckt den weiten Bereich der Merkmale des FR-F800 ab, bietet aber im Vergleich noch weitere zusätzliche Merkmale:

- Schutzart gemäß IP55
- Integriertes C2-EMV-Filter
- Integrierte Zwischenkreisdrossel zur Unterdrückung von Harmonischen
- Zwischenkreis mit großer Kapazität zur Vermeidung von Problemen bei schwankender Netzversorgung
- Integrierte mehrsprachige Anzeigeausgabe in Klartext inklusive Englisch, Deutsch, Französisch, Spanisch, Italienisch, Russisch, Türkisch, Polnisch und Japanisch
- Erfüllt die Vorgaben gemäß EN 61800-3

FR-F842-E

Der F842 ist in Einspeise und Leistungseinheit unterteilt. FR-CC2 (Stromrichtereinheit) und FR-F842 (Frequenzumrichter).
Diese Konzeption ermöglicht eine einfache Installation und den Aufbau kostengünstiger DC-Bus-Systeme.

FR-F840/842-E-SCM

Mit dem SCM Kit-DRIVES wird eine vorgefertigte ganzheitliche Condition Monitoring Lösung angeboten. Die Kombination aus den drei leistungsstarken Einzelbausteinen Frequenzumrichter, Bedienanzeige und einem vorkonfektionierten Schwingungssensor macht dies möglich. Der im Paket enthaltene Frequenzumrichter ist ihr Joker für alle Antriebsaufgaben. Das System kann auf bis zu zwei Sensoren erweitert werden. Die Inbetriebnahme erfolgt einfach mittels Bedienanzeige, auch ohne Expertenwissen im Bereich Condition Monitoring.
Leistungsbereich: FR-F820-E: 0,75-110 kW, 200-240 V AC,
FR-F840-E: 0,75-315 kW, 380-500 V AC
FR-F846-E: 0,75-160 kW, 380-500 V AC
(Modell gemäß Schutzart IP55)
FR-F842-E: 355-560 kW, 380-500 V AC
(Modell mit separater Stromrichtereinheit)

Stromrichtereinheit FR-CC2- \square

Die Stromrichtereinheiten FR-CC2-H sind Diodengleichrichter mit Zwölfpulsgleichrichter Anschlussmöglichkeit und dadurch bei Verwendung mit geringen Oberschwingungsanteil ausgestattet. Sie werden zusammen mit dem Frequenzumrichtern FR-F842 eingesetzt. Die Trennung der Module erlaubt den flexiblen Aufbau unterschiedlicher Systeme wie Parallelantriebe und gemeinsame Bus-Systeme. Das spart Kosten und minimiert den Platzbedarf für die Installation.

Technische Daten FR-F840-00023 bis -01160

Baureihe				FR-F840-D-E2-60/-E2-60-SCM1														
				00023	00038	00052	00083	00126	00170	00250	00310	00380	00470	00620	00770	00930	01160	
Ausgang	Motornennleistung	120 \% Überlastfähigkeit (SLD) ${ }^{\text {® }}$		0,75	1,5	2,2	3,7	5,5	7,5	11	15	18,5	22	30	37	45	55	
		150 \% Überlastfähigkeit (LD)		0,75	1,5	2,2	3,7	5,5	7,5	11	15	18,5	22	30	37	45	55	
	$\begin{aligned} & \text { Gerätenenn- } \\ & \text { strom }^{\circledR} \end{aligned}$	120 \% Überlastfähigkeit (SLD) ${ }^{(6)}$ 150 \% Überlastfähigkeit (LD)	I nenn ${ }^{\text {® }}$	2,3	3,8	5,2	8,3	12,6	17	25	31	38	47	62	77	93	116	
			I max. 60 s	2,5	4,2	5,7	9,1	13,9	18,7	27,5	34,1	41,8	51,7	68,2	84,7	102,3	127,5	
			I max. 3 s	2,8	4,6	6,2	10	15,1	20,4	30	37,2	45,6	56,4	74,4	92,4	111,6	139,2	
			I nenn ${ }^{\text {c }}$	2,1	3,5	4,8	7,6	11,5	16	23	29	35	43	57	70	85	106	
			I max. 60 s	2,5	4,2	5,8	9,1	13,8	19,2	27,6	34,8	42	51,6	68,4	84	102	127,2	
			I max. 3 s	3,1	5,2	7,2	11,4	17,2	24	34,5	43,5	52,5	64,5	85,5	105	127,5	159	
	$\begin{aligned} & \text { Ausgangs- kVA } \\ & \text { leistung } \end{aligned}$	SLD ${ }^{\text {® }}$		1,8	2,9	4,0	6,3	9,6	13	19,1	23,6	29,0	35,8	47,3	58,7	70,9	88,4	
		LD		1,6	2,7	3,7	5,8	8,8	12,2	17,5	22,1	26,7	32,8	43,4	53,3	64,8	80,8	
	Überlastfähigkeit ${ }^{(2)}$	SLD		110% des Gerätenennstroms für $60 \mathrm{~s} ; 120 \%$ für 3 s . (bei max. $40^{\circ} \mathrm{C}$ Umgebungstemperatur)														
		LD		120% des Gerätenennstroms für 60 s; 150% für 3 s . (bei max. $50^{\circ} \mathrm{C}$ Umgebungstemperatur)														
	Spannung ${ }^{(3)}$			3 -phasig, O V bis Anschlussspannung														
	Frequenzbereich Hz			$0,2-590 \mathrm{~Hz}$														
	Steuerverfahren			U/f-Steuerung, Regelung auf optimalen Erregerstrom oder Vektorregelung (Simple Magnetic Flux Vector Control)														
	Modulationsverfahren			Sinusbewertete PWM, Soft-PWM														
	Taktfrequenz			0,7-14,5 kHz (frei einstellbar)														
Eingang	Anschlussspannung			3-phasig, 380-500 V AC, $-15 \% /+10 \%$														
	Spannungsbereich			$323-550 \mathrm{~V}$ AC bei $50 / 60 \mathrm{~Hz}$														
	Frequenzbereich			$50 / 60 \mathrm{~Hz} \pm 5 \%$														
	$\begin{aligned} & \text { Eingangs- } \\ & \text { nenn- } \\ & \text { leistung (®) } \end{aligned} \text { kVA }$			2,5	4,1	5,9	8,3	12	17	24	31	37	44	59	74	88	107	
				3,7	5,5	7,7	12	17	24	29	34	41	57	68	81	99		
Sonstiges	Kühlung				Selbstkühlung			Lüfterkühlung										
	Schutzart			IP20											IP00			
	Verlust-leistung $\quad \mathrm{kW}$			$\begin{aligned} & 0,055 \\ & \hline 0,05 \end{aligned}$	0,075	0,085	0,13	0,175	0,245	0,345	0,37	0,45	0,565	0,74	0,93	1,11	1,34	
				0,07	0,08	0,12	0,16	0,23	0,315	0,345	0,415	0,52	0,675	0,825	1,02	1,22		
	Gewicht Frequenzumrichter kg				2,5	2,5	2,5	3,0	3,0	6,3	6,3	8,3	8,3	15	15	23	41	41
	Abmessungen (BxHxT)		mm	$150 \times 260 \times 140$					$220 \times 260 \times 170$		220x300x190		$250 \times 400 \times 190$		$\begin{aligned} & 325 \times 550 \\ & \text { x195 } \end{aligned}$	435x550x250		

Bestellangaben ${ }^{(1)}$	Art.-Nr.	Ethernet Version (E2)	307171	307172	307173	307174	307215	307216	307217	307218	307219	307220	307221	307222	307223	307224
		Smart condition monitoring (SCM) Kit	314607	314608	314609	314610	314611	314612	314613	314614	314615	314616	314617	314618	314619	314620
		Leistungseinheit	-	-	-	-	-	-	-	-	-	-	-	307162	307163	307164
		Steuerkarte (Ethernet)	-	-	-	-	-	-	-	-	-	-	-	307205	307205	307205

Hinweis:
(1) Die angegebene Motornennleistung entspricht der maximal zulässigen Leistung für den Gebrauch eines 4-Pol-Standardmotors von Mitsubishi Electric.
(2) Die Prozentwerte der Überlastfähigkeit des Gerätes kennzeichnen das Verhältnis zum Nennausgangsstrom des Frequenzumrichters in der jeweiligen Betriebsart. Für eine wiederholte Anwendung ist es erforderlich, den Frequenzumrichter und den Motor solange abkühlen zu lassen, bis deren Betriebstemperatur unter den Wert sinkt, der bei 100% Last erreicht wird. Die Berechnung der Pausenzeiten erfolgt nach der EffektivstromBerechnungsmethode ($1^{2} \mathrm{xt}$). Dies setzt die Kenntnis des Arbeitsyyklus voraus. Bei einer Umgebungstemperatur bis $40^{\circ} \mathrm{C}$ (bis $30^{\circ} \mathrm{C}$ bei Geräten mit Überlastfähigkeit SLD) können die Geräte bis $\mathrm{FR}-\mathrm{F} 820-01250(30 \mathrm{~kW}$) sowie bis FR-F840-00620(30 kW) ohne Abstand direkt nebeneinander montiert werden.
(3) Die maximale Ausgangsspannung kann den Wert der Eingangsspannung nicht übersteigen. Die Einstellung der Ausgangsspannung kann über den gesamten Bereich der Eingangsspannung erfolgen.
(4) Die Eingangsnennleistung ist von dem Impedanzwert (einschließlich Kabel und Eingangsdrossel) auf der Netzeingangsseite abhăngig.
(5) Bei Anwahl der Lastkennlinie mit einer Überlastfähigkeit von 120% darf eine maximale Umgebungstemperatur von $40^{\circ} \mathrm{C}$ nicht überschritten werden.
(6) Beim Betrieb mit einer Taktfrequen $\geq \geq 2,5 \mathrm{kHz}$ kann sich der Ausgangsstrom auf bis $z \mathrm{u} ~ 85 \%$ des Nennstromes reduzieren.
(7) Alle Frequenzumrichter mit Platinenschutzlackierung (IEC60721-3-332/352)

Technische Daten FR-F840-01800 bis -06830

Baureihe				FR-F840- \square-E2-60/-E2-60-SCM									
				01800	02160	02600	03250	03610	04320	04810	05470	06100	06830
Ausgang	Motornennleistung ${ }^{1}{ }^{1} \mathrm{~kW}$	120 \% Überlastfàhigkeit (SLD) ${ }^{\text {® }}$		90	110	132	160	185	220	250	280	315	355
		150 \% Überlastfăhigkeit (LD)		75	90	110	132	160	185	220	250	280	315
	Gerätenennstrom (6) ${ }^{\text {A }}$	$\begin{aligned} & 120 \% \\ & \text { Überlastfahigkeit } \\ & \text { (SLD) }^{\text {® }} \end{aligned}$	I nenn ${ }^{\text {© }}$	180	216	260	325	361	432	481	547	610	683
			I max. 60 s	198	238	286	357	397	475	529	602	671	751
			I max. 3 s	216	259	312	390	433	518	577	656	732	820
		150% Überlastfähigkeit (SLD)	I nenn ${ }^{\text {® }}$	144	180	216	260	325	361	432	481	547	610
			I max. 60 s	173	216	259	312	390	433	518	577	656	732
			I max. 3 s	216	270	324	390	487	541	648	721	820	915
	Ausgangsleistung [KVA]	SLD ${ }^{(3)}$		137	165	198	248	275	329	367	417	465	521
		LD		110	137	165	198	248	275	329	367	417	465
	Überlastfähigkeit ${ }^{(2)}$	SLD		110% des Gerätenennstroms für $60 \mathrm{~s} ; 120 \%$ für 3 s . (bei max. $40^{\circ} \mathrm{C}$ Umgebungstemperatur)									
		LD		120% des Gerätenennstroms für 60 s; 150% für 3 s . (bei max. $50^{\circ} \mathrm{C}$ Umgebungstemperatur)									
	Spannung ${ }^{(3)}$			3 -phasig AC, 380-500 V bis Anschlussspannung									
	Frequenzbereich Hz			0,2-590 Hz									
	Steuerverfahren			U/f-Steuerung, Regelung auf optimalen Erregerstrom oder Vektorregelung (Simple Magnetic Flux Vector Control)									
	Modulationsverfahren			Sinusbewertete PWM, Soft-PWM									
	Taktfrequenz			0,7-6 kHz (frei einstellbar)									
	Anschlussspannung			3-phasig, 380-500 V AC, $-15 \% /+10 \%$									
	Spannungsbereich			$323-550 \mathrm{~V}$ AC bei $50 / 60 \mathrm{~Hz}$									
Eingang	Frequenzbereich			$50 / 60 \mathrm{~Hz} \pm 5 \%$									

Bestellangaben ${ }^{\text {(2) }}$	Art.-Nr.	Ethernet Version (E2)	307225	307226	307227	307228	307229	307230	307231	307232	307233	307234
		Smart condition monitoring (SCM) Kit	314621	314622	314623	314624	314625	314626	314627	314628	314629	314630
		Leistungseinheit	307185	307186	307187	307188	307189	307190	307191	307192	307193	307194
		Steuerkarte (Ethernet)	307205	307205	307205	307205	307205	307205	307205	307205	307205	307205

Hinweis:
(1) Die angegebene Motornennleistung entspricht der maximal zulässigen Leistung für den Gebrauch eines 4-Pol-Standardmotors von Mitsubishi Electric.
(2) Die Prozentwerte der Überlastfähigkeit des Gerätes kennzeichnen das Verhältnis zum Nennausgangsstrom des Frequenzumrichters in der jeweiligen Betriebsart. Für eine wiederholte Anwendung ist es erforderlich, den Frequenzumrichter und den Motor solange abkühlen zu lassen, bis deren Betriebstemperatur unter den Wert sinkt, der bei 100% Last erreicht wird. Die Berechnung der Pausenzeiten erfolgt nach der EffektivstromBerechnungsmethode (${ }^{2} \mathrm{xt}$). Dies setzt die Kenntnis des Arbeitszyklus voraus. Bei einer Umgebungstemperatur bis $40^{\circ} \mathrm{C}$ (bis $30^{\circ} \mathrm{C}$ bei Geräten mit Überlastfähigkeit SLD) können die Geräte bis FR - $\mathrm{F} 820-01250(30 \mathrm{~kW}$) sowie bis FR-F840-00620(30 kW) ohne Abstand direkt nebeneinander montiert werden.
(3) Die maximale Ausgangsspannung kann den Wert der Eingangsspannung nicht übersteigen. Die Einstellung der Ausgangsspannung kann über den gesamten Bereich der Eingangsspannung erfolgen.
(4) Die Eingangsnennleistung ist von dem Impedanzwert (einschließlich Kabel und Eingangsdrossel) auf der Netzeingangsseite abhängig.
(5) Bei Anwahl der Lastkennlinie mit einer Überlastfähigkeit von 120% darf eine maximale Umgebungstemperatur von $40^{\circ} \mathrm{C}$ nicht überschritten werden.
(6) Beim Betrieb mit einer Taktfrequenz $\geq 2,5 \mathrm{kHz}$ kann sich der Ausgangsstrom auf bis $z \mathrm{u} 85 \%$ des Nennstromes reduzieren.
(7) Alle Frequenzumrichter mit Platinenschutzlackierung (IEC60721-3-3 3C2/3S2)

Technische Daten FR-F842-07700 bis -12120 und Stromrichtereinheit FR-CC2-H

Die Frequenzumrichter FR-F842 müssen zusammen mit einer Stromrichtereinheit FR-CC2 betrieben werden, die individuell bestellt werden muss.

Baureihe				FR-F842-D-E2-60/-E2-60-SCM				
				07700	08660	09620	10940	12120
Ausgang	Motornennleistung ${ }^{(11} \mathrm{kW}$	120 \% Überlastähigkeit (SLD) ${ }^{(4)}$		400	450	500	560	630
		150 \% Überlastfàhigkeit (LD)		355	400	450	500	560
	Gerätenennstrom ${ }_{\text {© }}^{A}$	$\begin{aligned} & 120 \% \\ & \text { Überlast(ähigkeit } \\ & \text { (SLD) }^{(4)} \end{aligned}$	I nenn ${ }^{\text {® }}$	770	866	962	1094	1212
			I max. 60 s	847	953	1058	1203	1333
			I max. 3 s	924	1039	1154	1313	1454
		$\begin{aligned} & 150 \% \\ & \text { Überlastfähigkeit } \\ & \text { (SLD) } \end{aligned}$	I nenn ${ }^{\text {(5) }}$	683	770	866	962	1094
			I max. 60 s	820	924	1039	1154	1313
			I max. 3 s	1024	1155	1299	1443	1641
	Ausgangsleistung [kVA]	SLD ${ }^{(4)}$		587	660	733	834	924
		LD		521	587	660	733	834
	Uberlastfähigkeit ${ }^{2}$	SLD		110% des Gerätenennstroms für 60 s; 120% für 3 s . (bei max. $40^{\circ} \mathrm{C}$ Umgebungstemperatur)				
		LD		120% des Gerätenennstroms für $60 \mathrm{~s} ; 150 \%$ für 3 s . (bei max. $50^{\circ} \mathrm{C}$ Umgebungstemperatur)				
	Spannung ${ }^{(3)}$			3 -phasig $\mathrm{AC}, 380-500 \mathrm{~V}$ bis Anschlussspannung				
	Frequenzbereich Hz			$0,2-590 \mathrm{~Hz}$				
	Steuerverfahren			U/f-Steuerung, Regelung auf optimalen Erregerstrom oder Vektorregelung (Simple Magnetic Flux Vector Control)				
	Modulationsverfahren			Sinusbewertete PWM, Soft-PWM				
	Taktfrequenz			0,7-6 kHz (frei einstellbar)				
Eingang	Gleichspannungsversorgung			$430-780 \mathrm{~V}$ DC				
	Steuerspannung			1-phasig, $380-500 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$				
	Steuerspannungsbereich			Frequenz $\pm 5 \%$, Spannung $\pm 10 \%$				
Sonstiges	Kühlung			Lüfterkühlung				
	Schutzart			IPOO				
	$\begin{array}{ll}\text { Verlust- } \\ \text { leistung } & \text { KLD } \\ & \text { SD }\end{array}$			5,8	6,69	7,37	8,6	9,81
				5,05	5,8	6,48	7,34	8,63
	Gewicht Frequenzumrichter kg			260	260	370	370	370
	Gewicht Zwischenkreisdrossel ${ }^{\text {kg }}$			50	57	67	85	95
	Abmessungen (BxHxT) mm			$790 \times 1330 \times 440$		995x1580x440		
Bestellangaben © ${ }^{\text {© }}$ Art.-Nr.		Ethernet Version (E2)		307235	307236	$307237 \quad 307238$		307239
		Smart condition monitoring (SCM) Kit		314631	314632	314633	314634	314635
		Leistungseinheit		307195	307196	307197	307198	307199
		Steuerkarte (Ethernet)		307205	307205	307205	307205	307205

Hinweise:

(1) Die angegebene Motornennleistung entspricht der maximal zulässigen Leistung für den Gebrauch eines 4-Pol-Standardmotors von Mistsubishi Electric.
(2) Die Prozentwerte der Überlastfähigkeit des Gerätes kennzeichnen das Verhältnis vom Überlaststrom zum Nennausgangsstrom des Frequenzumrichters in der jeweiligen Betriebsart. Für e eine wiederholte Anwendung ist es erforderlich, den Frequenzumrichter, die Stromrichtereinheit und den Motor solange abkühlen zu lassen, bis deren Betriebstemperatur unter den Wert sinkt, der bei 100% Last erreicht wird.
(3) Die maximale Ausgangsspannung kann den Wert der Eingangsspannung nicht übersteigen. Die Einstellung der Ausgangsspannung kann über den gesamten Bereich der Eingangsspannung erfolgen.
(4) Bei Anwahl der Lastkennlinie mit einer Überlastfähigkeit von 120% darf eine maximale Umgebungstemperatur von $30^{\circ} \mathrm{C}$ nicht überschritten werden.
(5) Beim Betrieb mit einer Taktfrequenz $\geq 2,5 \mathrm{kHz}$ kann sich der Ausgangsstrom auf bis $z u 85 \%$ des Nennstromes reduzieren.
(6) Alle Frequenzumrichter mit Platinenschutzlackierung (IEC60721-3-33C2/352)
(7) Die angegebene Eingangsnennleistung gilt beim angegebenen Gerätenennstrom. Die Eingangsnennleistung ist von der Impedanz (einschließlich Leitungen und Eingangsdrossel) auf der Netzeingangsseite abhängig.
(8) Die zulässige Phasen-Unsymmetrie für die Spannung beträgt 3% (Phasen-Unsymmetrie = (höchste Spannung zwischen den Leitern - durchschnittliche Spannung zwischen den 3 Leitern)/durchschnittliche Spannung zwischen den 3 Leitern x 100)
(9) Die Ausgangsspannung der Stromrichtereinheit hängt von der Eingangsspannung der Last ab. Die Impulsspannung am Ausgang der Stromrichtereinheit bleibt unverändert bei ca. $\sqrt{ } 2$ mal der Eingangsspannung.

Allgemeine technische Daten FR-F800

FR-F800			Beschreibung
Einstell-möglichkeiten	Frequenzauflösung	Analog	$0,015 \mathrm{~Hz} / 0-50 \mathrm{~Hz}$ (Anschlussklemme 2, 4: 0-10 V/12 Bit) $0,03 \mathrm{~Hz} / 0-50 \mathrm{~Hz}$ (Anschlusklemme 2, 4: 0-5V/11 Bit, $0-20 \mathrm{~mA} / 11$ bit, terminal 1:-10 $-+10 \mathrm{~V} / 12$ Bit) $0,06 \mathrm{~Hz} / 0-50 \mathrm{~Hz}$ (Anschlussklemme 1:0- $\pm 5 \mathrm{~V} / 11$ Bit)
		Digital	$0,01 \mathrm{~Hz}$
	Frequenzgenauigkeit		$\pm 0,2 \%$ der Maximalfrequenz (Temperaturbereich $25^{\circ} \pm 10^{\circ}$) bei Analogeingang; $\pm 0,01 \%$ der Maximalfrequenz bei Digitaleingang
	Spannungs-/Frequenzkennlinie		Basisfrequenz einstellbar zwischen 0 und 400 Hz ; Auswahl der Kennlinie zwischen konstantem Drehmoment, variablem Drehmoment oder flexibler 5-Punkt-U/f-Kennlinie
	Anlaufdrehmoment		$120 \%(3 \mathrm{~Hz})$ bei Einstellung auf einfache Stromvektorregelung und Schlupfkompensation
	Drehmomentanhebung		Manuelle Drehmomentanhebung
	Beschleunigungs-/Bremszeit		0 bis 3600 s getrennt einstellbar (Linearer oder S-förmiger Verlauf und Getriebespielkompensation sind frei wählbar)
	Beschleunigungs-/Bremskennlinie		Linearer oder S-förmiger Verlauf, frei wählbar
	DC-Bremsung		Betriebsfrequenz: 0-120 Hz; Dauer der Bremsung ($0-10 \mathrm{~s}$) und Höhe der Bremsspannung ($0-30 \%$) sind frei einstellbar. Die Aktivierung der DC-Bremsung ist auch über Digitaleingang möglich
	Strombegrenzung		Ansprechschwelle 0-150\%, frei einstellbar, auch per Analogeingang
	Motorschutz		Elektronisches Motorschutzrelais (Nennstrom frei einstellbar)
	Drehmomentbegrenzung		Drehmomentbegrenzung von $0-400 \%$, frei einstellbar
Steuer-signale für den Betrieb	Frequenzsollwerte	Analogeingang	Anschlussklemme 2, 4: $0-5 \mathrm{~V} D C, 0-10 \mathrm{VDC}, 0 / 4-20 \mathrm{~mA}$ Anschlussklemme $1: 0- \pm 5 \mathrm{VDC}, 0- \pm 10 \mathrm{VDC}$
		Digital	4 -stelliger BCD- oder 16-Bit-Binärcode bei Verwendung einer Bedieneinheit oder Optionskarte (FR-A8AX)
	Startsignal		Individuelle Auswahl zwischen Rechts- und Linkslauf. Als Starteingang kann ein selbsthaltendes Signal gewählt werden.
	$\begin{array}{cc} & \text { Allgemein } \\ & \text { Impulseingang } \\ \text { Eingangssignale } \\ & \\ \text { Betriebszustände }\end{array}$		Drehzahlwahl (drei Drehzahlen), 2. Parametersatz, Funktionszuweisung Klemme 4, Tippbetrieb, Reglersperre, Selbsthaltung des Startsignals, Startsignal Rechtslauf, Startsignal Linkslauf, Frequenzumrichter zurücksetzen Die Funktionszuweisung der Eingangsklemmen erfolgt über die Parameter 178 bis 189.
			$100 \mathrm{kBit} / \mathrm{s}$
			Einstellung von maximaler/minimaler Frequenz, Drehzahl-/Geschwindigkeitsvorwahl, Beschleunigungs-/Bremskennlinie, externer Motorschutz, DC-Bremsung ${ }^{~}{ }^{\text {, }}$, Startfrequenz, Tippbetrieb, Reglersperre (MRS), Strombegrenzung, Zwischenkreisführung der Ausgangsfrequenz, Bremsung mit erhöhter Erregung, DC-Einspeisung, Frequenzsprung, Drehrichtungsumkehr, Automatischer Wiederanlauf nach Netzausfall, Motorumschaltung auf Netzbetrieb, Digitales Motorpotentiometer, Fortsetzung des Betriebs nach einem Netzausfall, Wahl der Taktfrequenz, intelligente Ausgangsstromüberwachung, Reversierverbot, Betriebsartenwahl, Schlupfkompensation, Vibrationsunterdrückung, Traverse-Funktion, Auto-Tuning, Selbsteinstellung der Betriebsmotordaten, serielle Datenkommunikation (RS485), PID-Regelung, Vorfüllmodus, Steuerung des Kühlventilators, Stoppmethode (Verzögerung bis Stopp/Austrudeln), Stoppmethode bei Netzausfall, SPS-Funktionalität, Standzeitüberwachung, Wartungsintervall-Alarm, Strommittelwert, Einstellung der Überlastáhigkeit, Testbetrieb, Versorgung des Steuerkreises durch separate 24-V-Versorgungsspannung, Funktion „Sicher abgeschaltetes Moment (STO)",'PLe/SLL3, Automatische Reduzierung der Leistungsaufnahme, BACnet-Kommunikation, PID-Verstärkungseinstellung, Reinigung, Speicherung der Lastkennlinie, Notfall-Modus
	Ausgangssignal	Ausgangssignal Open-CollectorAusgang (5 Klemmen) Relais-Ausgang (2 Klemmen)	Motorlauf, Frequenz-Soll-/Istwertvergleich, Kurzzeitiger Netzausfall (Unterspannung) ©, Überlastwarnung, Frequenzerkennung, Alarme, Ausgabe des Alarmcodes (4 Bits über Open-Collector-Ausgänge)
Anzeige	Mit Messgerät	Stromausgang	Max. $20 \mathrm{~mA} \mathrm{DC}: 1$ Klemme (Ausgabe eines Stromes) Die an der Klemme CA ausgegebene Größe kann durch die Einstellung von Pr. 54,Ausgabe FM/CA-Klemme" festgelegt werden.
		Spannungsausgang	Max. $\pm 10 \mathrm{~V}$ DC: 1 Klemme (Ausgabe einer Spannung) Die an der Klemme AM ausgegebene Größ̉e kann durch die Einstellung von Pr. 158 „Ausgabe AM-Klemme" festgelegt werden.
	Auf der Bedieneinheit (FR-DU08)	Betriebszustände	Ausgangsfrequenz, Ausgangsstrom, Ausgangsspannung, Frequenzsollwerte Die angezeigte Größe kann durch die Einstellung von Pr. 52,Anzeige der Bedieneinheit" festgelegt werden.
		Alarmanzeige	Nach dem Ansprechen einer Schutzfunktion erfolgt die Anzeige einer Fehlermeldung. Es werden Ausgangsspannung, Ausgangsstrom, Frequenz, kumulierte Betriebszeit, Jahr, Monat, Datum, Zeit unmittelbar vor dem Auslösen der Schutzfunktion und die letzten 8 Alarme gespeichert.
Schutz	Funktionen		Überstrom (während der Beschleunigung, Verzögerung, bei konstanter Geschwindigkeit oder im Stillstand), Überspannung (während der Beschleunigung, Verzögerung, bei konstanter Geschwindigkeit oder im Stillstand), Thermoschutz Frequenzumrichter, Thermoschutz Motor, Überhitzung Kühlkörper ${ }^{(1)}$, kurzzeitiger Netzausfall ${ }^{(1)}$, Unterspannung ${ }^{\text {(1) }}$, Eingangsphasenausfall (1) (2), Überlast Motor, fehlende Synchronisation ${ }^{(2)}$, Obere Lastgrenze überschritten, Untere Lastgrenze unterschritten, Kurzschluss im Frequenzumrichterausgang, offene Phase am Ausgang, Auslösung des externen Thermoschutzes ${ }^{(2)}$, PTC-Betrieb ${ }^{2}$, Optionsfehler, Fehler der Kommunikationsoption, PU-Verbindungsfehler, Überschreitung der Wiederholversuche, Fehler beim Speichern von Parametern ${ }^{(2)}$, CPU-Fehler, Kurzshluss in der Verbindung zur Bedieneinheit/Kurzschluss der Ausgangsspannung der 2. seriellen Schnittstelle, Kurzschluss der 24-V-DC-Ausgangsspannung, Grenzwert des Ausgangsstroms überschritten ${ }^{(2)}$, Fehler der Einschaltstrombegrenzung ${ }^{\circledR}$, Kommunikationsfehler (Frequenzumrichter), Fehler Analogeingang, Fehler bei Kommunikation über die USB-Schnittstelle, Fehler im Sicherheitskreis, Drehzahlüberschreitung ${ }^{2}$, Stromsollwert-Verlust ${ }^{2}$, Fehler Vorfüllmodus ${ }^{2}$, Signalfehler PID-Regelung ${ }^{2}$, interner Schaltkreisfehler, vom Anwender mit der SPS-Funktion ausgelöste Fehleranzeige
	Warnungen		Ventilatorfehler, Motor-Kippschutz durch Überstrom, Motor-Kippschutz durch Überspannung, Voralarm Thermoschutz, PU-Stopp, Kopierfehler Parameter, Sicher abgeschaltetes Moment (STO), Wartungstimer 1 bis $3{ }^{\circledR}$, Bedieneinheit verriegett ${ }^{2}$, Passwortschutz ${ }^{2}$, Schreibfehler Parameter, Kopierfehler, Betrieb mit externer Versorgungsspannung (24V)
Sonstiges	Umgebungstemperatur		$-10^{\circ} \mathrm{C}$ bis $+50^{\circ} \mathrm{C}$
	Lagertemperatu		$-20^{\circ} \mathrm{C}$ bis $+65^{\circ} \mathrm{C}$

Hinweise:

(1) Die Einstellung ist nur für das Standardmodell verfügbar.
(2) In der Werkseinstellung des Frequenzumrichters ist diese Schutzfunktion deaktiviert.
(3) Nur für kurze Zeit zulässig (z. B. beim Transport)

Blockschaltbild FR-F800

Funktion	Klemme	Bezeichnung
	$\mathrm{L1}, \mathrm{~L}, \mathrm{~L}, \mathrm{~L}$	Netzspannungsanschluss
	$\mathrm{P} /+, \mathrm{N}-$	Anschluss für Bremseinheit

Belegung der Steuerklemmen

Funktion	Klemme	Bezeichnung	Beschreibung
Steueranschlüsse (programmierbar)	STF	Startsignal für Rechtslauf	Der Motor dreht im Rechtslauf, wenn an Klemme STF ein Signal anliegt.
	STR	Startsignal für Linkslauf	Der Motor dreht im Linkslauf, wenn an Klemme STR ein Signal anliegt.
	STOP	Selbsthaltung des Startsignals	Die Startsignale sind selbsthaltend, wenn an Klemme STOP ein Signal anliegt.
	RH, RM, RL	Geschwindigkeitsvorwahl	Vorwahl von 15 verschiedenen Ausgangsfrequenzen
	JOG	Tipp-Betrieb	Der Tipp-Betrieb wird durch ein Signal an der JOG-Klemme ausgewählt (Werkseinstellung). Die Startsignale STF und STR bestimmen die Drehrichtung.
		Impulseingang	Die JOG-Klemme kann als Impulseingang verwendet werden. Dazu muss die Einstellung des Pr. 291 verändert werden.
	RT	Zweiter Parametersatz	Durch ein Signal an der RT-Klemme kann ein zweiter Parametersatz angewählt werden.
	MRS	Reglersperre	Die Reglersperre stoppt die Ausgangsfrequenz ohne Berücksichtigung der Verzögerungszeit.
	RES	RESET-Eingang	Das Rücksetzen des Frequenzumrichters nach Ansprechen einer Schutzfunktion erfolgt durch ein Signal an der RES-Klemme ($t>0,1 \mathrm{~s}$).
	AU	Freigabe Strom-Sollwert	Die Freigabe der Sollwertvorgabe von 0/4-20 mA an Klemme 4 erfolgt durch Signalvorgabe an Klemme AU.
		PTC-Eingang	Zum Anschluss des PTC-Thermofühlers muss der AU-Klemme das PTC-Signal zugewiesen werden und der Schiebeschalter auf der Steuerplatine in Position PTC gebracht werden.
	CS	Automatischer Wiederanlauf nach Netzausfall	Wird an Klemme CS ein Signal angelegt, startet der Frequenzumrichter nach einem Netzausfall automatisch.
Bezugspunkte	SD	Bezugspunkt (OV) für die Klemme PC (24V)	In negativer Logik dient die SD-Klemme als gemeinsamer Bezugspunkt für die Schalteingänge. In positiver Logik muss bei einer Ansteuerung über Open-Collector-Transistoren (z. B. SPS) der Bezugspunkt der Spannungsquelle mit der SD-Klemme verbunden werden. Dadurch werden Funktionstörungen durch Fehlerströme verhindert. Die SD-Klemme ist der Bezugspunkt für die 24-V-Spannungsquelle an Klemme PC sowie für das externe $24-$ - - Netzteil an Klemme +24 . Diese Klemme ist von den Klemmen 5 und SE isoliert.
	PC	24 V DC-Ausgang	In negativer Logik muss bei einer Ansteuerung über Open-Collector-Transistoren (z. B. SPS) der Bezugspunkt der Spannungsquelle mit der PC-Klemme verbunden werden. Dadurch werden Funktionsstörungen durch Fehlerströme verhindert. In positiver Logik dient die PC-Klemme als gemeinsamer Bezugspunkt für die Schalteingänge. Ausgang zur Spannungsversorgung 24V DC $0,1 \mathrm{~A}$
	+24	Externe Spannungseinspeisung 24V	Zum Anschluss eines externen 24-V-Netzteils. Liegt an dieser Klemme eine externe DC-Spannung mit 24 V an, wird der Steuerkreis weiterhin mit Betriebsspannung versorgt, auch wenn der Leistungskreis ausgeschaltet ist.
Sollwertvorgabe	10 E	Spannungsausgang für Potentiometeranschluss	Ausgangsspannung 10 V DC. Der max. Ausgangsstrom beträgt 10 mA . Empfohlenes Potentiometer: $1 \mathrm{k} \Omega, 2 \mathrm{~W}$ linear
	10		Ausgangsspannung 5 V DC. Der max. Ausgangsstrom beträgt 10 mA . Empfohlenes Potentiometer: $1 \mathrm{k} \mathrm{\Omega}, 2 \mathrm{~W}$ linear
	2	Eingang für Frequenz-Sollwertsignal	Das Sollwertsignal $0-5 \mathrm{~V}$ oder $0-10 \mathrm{~V}, 0 / 4-20 \mathrm{~mA}$ wird an diese Klemme angelegt. Über Parameter 73 kann zwischen Spannungs- und Stromsollwert gewechselt werden. Der Eingangswiderstand beträgt $10 \mathrm{k} \Omega$.
	5	Sollwertsignal und Analogsignale	Klemme 5 stellt den Bezugspunkt für alle analogen Sollwertgrößen sowie für die analogen Ausgangssignale AM und CA dar. Die Klemme ist vom Bezugspotential des Digitalkreises (SD) isoliert und sollte nicht geerdet werden.
	1	Zusätzlicher Eingang für Frequenz-Sollwertsignal $0- \pm 5(10) V D C$	Ein zusätziches Spannungs-Sollwertsignal von $0- \pm 5(10) V D C$ kann an diese Klemme angelegt werden. Der Spannungsbereich ist auf $0- \pm 10 \mathrm{~V} \mathrm{DC}$ voreingestellt. Der Eingangswiderstand beträgt $10 \mathrm{k} \Omega$.
	4	Eingang für Sollwertsignal	Das Sollwertsignal 0/4-20 mA oder 0-10V wird an diese Klemme angelegt. Über Parameter 267 kann zwischen Spannungs- und Stromsollwert gewechselt werden. Der Eingangswiderstand beträgt 250Ω. Die Freigabe der Strom-Sollwertvorgabe erfolgt über die Klemmenfunktion AU.
Signalausgänge (programmierbar)	A1, B1, C1	Potentialfreier Relaisausgang 1 (Alarm)	Die Alarmausgabe erfolgt über Relaiskontakte. Gezeichnet ist der Normalbetrieb und der spannungslose Zustand. Wird die Schutzfunktion aktiviert, zieht das Relais an. Die Kontaktleistung beträgt $230 \mathrm{VAC} / 0,3 \mathrm{~A}$ oder $30 \mathrm{~V} \mathrm{DC} / 0,3 \mathrm{~A}$.
	A2, B2, C2	Potentialfreier Relaisausgang 2	Als Ausgangstreiber ist jedes der 42 möglichen Ausgangssignale wählbar. Die Kontaktleistung beträgt $230 \mathrm{~V} \mathrm{AC} / 0,3 \mathrm{~A}$ oder $30 \mathrm{~V} \mathrm{DC} / 0,3 \mathrm{~A}$.
	RUN	Signalausgang für Motorlauf	Der Ausgang ist durchgeschaltet, wenn die Ausgangsfrequenz höher als die Startfrequenz des Frequenzumrichters ist. Wird keine Frequenz ausgegeben oder ist die DC-Bremsung aktiv, ist der Ausgang gespertt.
	SU	Signalausgang für Frequenz-Soll-/Istwertvergleich	Der SU-Ausgang dient der Überwachung von Frequenz-Sollwert und Frequenz-Istwert. Der Ausgang wird durchgeschaltet, sobald sich der Frequenz-Istwert (Ausgangsfrequenz des Frequenzumrichters) dem Frequenz-Sollwert (vorgegeben durch das Sollwertsignal) innerhalb eines voreingestellten Toleranzbereiches angeglichen hat.
	IPF	Signalausgang für kurzzeitigen Netzausfall	Bei einer kurzzeitigen Netzunterbrechung im Zeitraum von $15 \mathrm{~ms} \leq$ tIPF $\leq 100 \mathrm{~ms}$ oder bei einer Unterspannung wird der Ausgang durchgeschaltet.
	OL	Signalausgang für Überlastalarm	Der OL-Ausgang ist durchgeschaltet, wenn der Ausgangsstrom des Frequenzumrichters die in Parameter 22 voreingestellte Stromgrenze überschreitet und der Abschaltschutz Überstrom aktiviert wurde. Liegt der Ausgangsstrom des Frequenzumrichters unterhalb der in Parameter 22 eingestellten Stromgrenze, ist das Signal am OL-Ausgang gesperrt.
	FU	Signalausgang zur Überwachung der Ausgangsfrequenz	Der Ausgang ist durchgeschaltet, sobald die Ausgangsfrequenz die in Parameter 42 (oder 43) vorgegebene Frequenz überschreitet. Andernfalls ist der FU-Ausgang gespert.
	SE	Ausgangsspannung für Signalausgänge	An diese Klemme wird die Spannung angeschlossen, die über die Open-Collector-Ausgänge RUN, SU, OL, IPF und FU geschaltet wird.
	CA	Analoger Stromausgang	Eine von 18 Anzeigefunktionen kann ausgewählt Ausgabe: Ausgangsfrequenz (Werkseinstellung), werden, $z . B$. externe Frequenzanzeige. CA- und AM- Lastwiderstand: $200 \Omega-450 \Omega$, Ausgangsstrom: $0-20 \mathrm{~mA}$
	AM	$\begin{aligned} & \text { Analogausgang } \\ & 0-10 \mathrm{VDC}(1 \mathrm{~mA}) \end{aligned}$	
Schnittstelle	-	PU-Schnittstelle	Die PU-Schnittstelle zum Anschluss der Bedieneinheit kann als RS485-Schnittstelle genutzt werden. E/A-Standard: RS485, Multi-Drop-Betrieb: max. 1152 Bit/s (maximale Leitungslänge: 500 m)
	-	RS485-Schnittstelle (über RS485-Klemme)	Kommunikation über RS485; E/A-Standard: RS485, Multi-Drop-Betrieb: max. 1152 Bit/s (maximale Leitungslänge: 500 m)
	-	2 USB-Anschlüsse (gemäß USB1.1/USB2.0)	Typ-A-Buchse: Bei Anschluss eines USB-Speichergeräts werden das Kopieren von Parametern, das Herunterladen eines SPS-Codes und die TraceFunktion unterstützt. Mini-B-Buchse: Durch Anschluss eines PC ist der Betrieb des Frequenzumrichters über den FR Configurator2 möglich.
SafetyAnschlüsse	S1, S2	Safety-Eingänge	Wird die Funktion, Sicher abgeschaltetes Moment (STO)" nicht verwendet, dürfen die Brücken zwischen den Klemmen S1-PC, S2-PC und SIC-SD nicht entfernt werden, da sonst kein Betrieb des Frequenzumrichters möglich ist.
	SIC	Referenzpotential für Sicherheitseingänge	
	SO	Safety-Monitorausgang	
	SOC	Bezugspunkt Überwachungsausgang „Sicher abgeschaltetes Moment (STO)"	

