

MELSERVO

Servo Amplifiers and Motors

Instruction Manual

MR-J2S-A Servo Amplifier

Safety Instructions ●

(Always read these instructions before using the equipment.)

Do not attempt to install, operate, maintain or inspect the servo amplifier and servo motor until you have read through this Instruction Manual, Installation guide, Servo motor Instruction Manual and appended documents carefully and can use the equipment correctly. Do not use the servo amplifier and servo motor until you have a full knowledge of the equipment, safety information and instructions.

In this Instruction Manual, the safety instruction levels are classified into "WARNING" and "CAUTION".

Indicates that incorrect handling may cause hazardous conditions, resulting in death or severe injury.

Indicates that incorrect handling may cause hazardous conditions, resulting in medium or slight injury to personnel or may cause physical damage.

Note that the CAUTION level may lead to a serious consequence according to conditions. Please follow the instructions of both levels because they are important to personnel safety.

What must not be done and what must be done are indicated by the following diagrammatic symbols:

): Indicates what must not be done. For example, "No Fire" is indicated by 🕟 .

: Indicates what must be done. For example, grounding is indicated by 😃

In this Instruction Manual, instructions at a lower level than the above, instructions for other functions, and so on are classified into "POINT".

After reading this installation guide, always keep it accessible to the operator.

1. To prevent electric shock, note the following:

⚠ WARNING

- Before wiring or inspection, switch power off and wait for more than 15 minutes. Then, confirm the voltage is safe with voltage tester. Otherwise, you may get an electric shock.
- Connect the servo amplifier and servo motor to ground.
- Any person who is involved in wiring and inspection should be fully competent to do the work.
- Do not attempt to wire the servo amplifier and servo motor until they have been installed. Otherwise, you may get an electric shock.
- Operate the switches with dry hand to prevent an electric shock.
- The cables should not be damaged, stressed, loaded, or pinched. Otherwise, you may get an electric shock.
- During power-on or operation, do not open the front cover of the servo amplifier. You may get an electric shock.
- Do not operate the servo amplifier with the front cover removed. High-voltage terminals and charging area are exposed and you may get an electric shock.
- Except for wiring or periodic inspection, do not remove the front cover even of the servo amplifier if the power is off. The servo amplifier is charged and you may get an electric shock.

2. To prevent fire, note the following:

↑ CAUTION

- Do not install the servo amplifier, servo motor and regenerative brake resistor on or near combustibles. Otherwise a fire may cause.
- When the servo amplifier has become faulty, switch off the main servo amplifier power side. Continuous flow of a large current may cause a fire.
- When a regenerative brake resistor is used, use an alarm signal to switch main power off. Otherwise, a regenerative brake transistor fault or the like may overheat the regenerative brake resistor, causing a fire.

3. To prevent injury, note the follow

↑ CAUTION

- Only the voltage specified in the Instruction Manual should be applied to each terminal, Otherwise, a burst, damage, etc. may occur.
- Connect the terminals correctly to prevent a burst, damage, etc.
- Ensure that polarity (+, -) is correct. Otherwise, a burst, damage, etc. may occur.
- Take safety measures, e.g. provide covers, to prevent accidental contact of hands and parts (cables, etc.) with the servo amplifier heat sink, regenerative brake resistor, servo motor, etc.since they may be hot while power is on or for some time after power-off. Their temperatures may be high and you may get burnt or a parts may damaged.
- During operation, never touch the rotating parts of the servo motor. Doing so can cause injury.

4. Additional instructions

The following instructions should also be fully noted. Incorrect handling may cause a fault, injury, electric shock, etc.

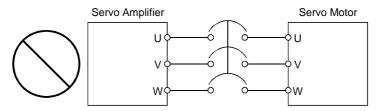
(1) Transportation and installation

⚠ CAUTION

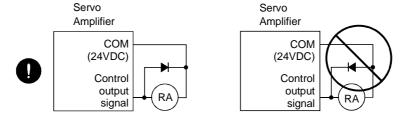
- Transport the products correctly according to their masses.
- Stacking in excess of the specified number of products is not allowed.
- Do not carry the servo motor by the cables, shaft or encoder.
- Do not hold the front cover to transport the servo amplifier. The servo amplifier may drop.
- Install the servo amplifier in a load-bearing place in accordance with the Instruction Manual.
- Do not climb or stand on servo equipment. Do not put heavy objects on equipment.
- The controller and servo motor must be installed in the specified direction.
- Leave specified clearances between the servo amplifier and control enclosure walls or other equipment.
- Do not install or operate the servo amplifier and servo motor which has been damaged or has any parts missing.
- Provide adequate protection to prevent screws and other conductive matter, oil and other combustible matter from entering the servo amplifier and servo motor.
- Do not drop or strike servo amplifier or servo motor. Isolate from all impact loads.

· When you keep or use it, please fulfill the following environmental conditions.

Envir	ronment		Conditions							
LIIVII	Onnent		Servo amplifier	Servo motor						
	During	[°C]	0 to +55 (non-freezing)	0 to +40 (non-freezing)						
Ambient	operation	[°F]	32 to 131 (non-freezing)	32 to 104 (non-freezing)						
temperature	la atauaua	[°C]	-20 to +65 (non-freezing)	-15 to +70 (non-freezing)						
	In storage	[°F]	-4 to 149 (non-freezing)							
Ambient humidity	During operation		90%RH or less (non-condensing)	80%RH or less (non-cond	densing)					
Hulfilalty	In storage		90%RH or less	(non-condensing)						
Ambience			Indoors (no direct sunlight) Free from corrosiv	re gas, flammable gas, oil r	mist, dust and dirt					
Altitude			Max. 1000m (3280 ft) above sea level							
				HC-KFS Series HC-MFS Series HC-UFS13 to 73	X • Y : 49					
	[m/s²]		5.9 or less	HC-SFS81 HC-SFS52 to 152 HC-SFS53 to 153 HC-RFS Series HC-UFS 72 • 152	X • Y : 24.5					
			3.9 Of less	HC-SFS121 • 201 HC-SFS202 • 352 HC-SFS203 • 353 HC-UFS202 to 502	X : 24.5 Y : 49					
				HC-SFS301 HC-SFS502 to 702	X : 24.5 Y : 29.4					
(Note)				HA-LFS11K2 to 22K2	X : 11.7 Y : 29.4					
Vibration				HC-KFS Series HC-MFS Series HC-UFS 13 to 73	X • Y : 161					
	[ft/s²]			HC-SFS81 HC-SFS52 to 152 HC-SFS53 to 153 HC-RFS Series HC-UFS 72 • 152	X • Y : 80					
			19.4 or less	HC-SFS121 • 201 HC-SFS202 • 352 X : 8 HC-SFS203 • 353 Y : 1 HC-UFS202 to 502						
				HC-SFS301 HC-SFS502 to 702	X:80 Y:96					
				HA-LFS11K2 to 22K2	X:38 Y:96					


⚠ CAUTION

- Securely attach the servo motor to the machine. If attach insecurely, the servo motor may come off during operation.
- The servo motor with reduction gear must be installed in the specified direction to prevent oil leakage.
- Take safety measures, e.g. provide covers, to prevent accidental access to the rotating parts of the servo motor during operation.
- Never hit the servo motor or shaft, especially when coupling the servo motor to the machine. The encoder may become faulty.
- Do not subject the servo motor shaft to more than the permissible load. Otherwise, the shaft may break.
- When the equipment has been stored for an extended period of time, consult Mitsubishi.


(2) Wiring

⚠ CAUTION

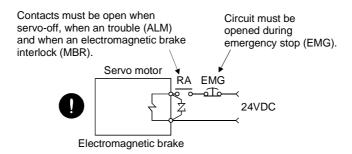
- Wire the equipment correctly and securely. Otherwise, the servo motor may misoperate.
- Do not install a power capacitor, surge absorber or radio noise filter (FR-BIF option) between the servo motor and servo amplifier.
- Connect the output terminals (U, V, W) correctly. Otherwise, the servo motor will operate improperly.

- Do not connect AC power directly to the servo motor. Otherwise, a fault may occur.
- The surge absorbing diode installed on the DC output signal relay of the servo amplifier must be wired in the specified direction. Otherwise, the emergency stop (EMG) and other protective circuits may not operate.

(3) Test run adjustment

↑ CAUTION

- Before operation, check the parameter settings. Improper settings may cause some machines to perform unexpected operation.
- The parameter settings must not be changed excessively. Operation will be insatiable.


↑ CAUTION

- Provide an external emergency stop circuit to ensure that operation can be stopped and power switched off immediately.
- Any person who is involved in disassembly and repair should be fully competent to do the work.
- Before resetting an alarm, make sure that the run signal of the servo amplifier is off to prevent an accident. A sudden restart is made if an alarm is reset with the run signal on.
- Do not modify the equipment.
- Use a noise filter, etc. to minimize the influence of electromagnetic interference, which may be caused by electronic equipment used near the servo amplifier.
- Use the servo amplifier with the specified servo motor.
- Burning or breaking a servo amplifier may cause a toxic gas. Do not burn or break a servo amplifier.
- The electromagnetic brake on the servo motor is designed to hold the motor shaft and should not be used for ordinary braking.
- For such reasons as service life and mechanical structure (e.g. where a ballscrew and the servo motor are coupled via a timing belt), the electromagnetic brake may not hold the motor shaft. To ensure safety, install a stopper on the machine side.

(5) Corrective actions

↑ CAUTION

- When it is assumed that a hazardous condition may take place at the occur due to a power failure or a product fault, use a servo motor with electromagnetic brake or an external brake mechanism for the purpose of prevention.
- Configure the electromagnetic brake circuit so that it is activated not only by the servo amplifier signals but also by an external emergency stop (EMG).

- When any alarm has occurred, eliminate its cause, ensure safety, and deactivate the alarm before restarting operation.
- When power is restored after an instantaneous power failure, keep away from the machine because the machine may be restarted suddenly (design the machine so that it is secured against hazard if restarted).

(6) Maintenance, inspection and parts replacement

⚠ CAUTION

• With age, the electrolytic capacitor of the servo amplifier will deteriorate. To prevent a secondary accident due to a fault, it is recommended to replace the electrolytic capacitor every 10 years when used in general environment.

Please consult our sales representative.

(7) General instruction

• To illustrate details, the equipment in the diagrams of this Specifications and Instruction Manual may have been drawn without covers and safety guards. When the equipment is operated, the covers and safety guards must be installed as specified. Operation must be performed in accordance with this Specifications and Instruction Manual.

About processing of waste

When you discard servo amplifier, a battery (primary battery), and other option articles, please follow the law of each country (area).

YEAR WAXIMUM SAFETY

- These products have been manufactured as a general-purpose part for general industries, and have not been designed or manufactured to be incorporated in a device or system used in purposes related to human life.
- Before using the products for special purposes such as nuclear power, electric power, aerospace, medicine, passenger movement vehicles or under water relays, contact Mitsubishi.
- These products have been manufactured under strict quality control. However, when installing the product where major accidents or losses could occur if the product fails, install appropriate backup or failsafe functions in the system.

EEP-ROM life

The number of write times to the EEP-ROM, which stores parameter settings, etc., is limited to 100,000. If the total number of the following operations exceeds 100,000, the servo amplifier and/or converter unit may fail when the EEP-ROM reaches the end of its useful life.

- Write to the EEP-ROM due to parameter setting changes
- Home position setting in the absolute position detection system
- Write to the EEP-ROM due to device changes

Precautions for Choosing the Products

Mitsubishi will not be held liable for damage caused by factors found not to be the cause of Mitsubishi; machine damage or lost profits caused by faults in the Mitsubishi products; damage, secondary damage, accident compensation caused by special factors unpredictable by Mitsubishi; damages to products other than Mitsubishi products; and to other duties.

COMPLIANCE WITH EC DIRECTIVES

1. WHAT ARE EC DIRECTIVES?

The EC directives were issued to standardize the regulations of the EU countries and ensure smooth distribution of safety-guaranteed products. In the EU countries, the machinery directive (effective in January, 1995), EMC directive (effective in January, 1996) and low voltage directive (effective in January, 1997) of the EC directives require that products to be sold should meet their fundamental safety requirements and carry the CE marks (CE marking). CE marking applies to machines and equipment into which servo amplifiers have been installed.

(1) EMC directive

The EMC directive applies not to the servo units alone but to servo-incorporated machines and equipment. This requires the EMC filters to be used with the servo-incorporated machines and equipment to comply with the EMC directive. For specific EMC directive conforming methods, refer to the EMC Installation Guidelines (IB(NA)67310).

(2) Low voltage directive

The low voltage directive applies also to servo units alone. Hence, they are designed to comply with the low voltage directive.

This servo is certified by TUV, third-party assessment organization, to comply with the low voltage directive.

(3) Machine directive

Not being machines, the servo amplifiers need not comply with this directive.

2. PRECAUTIONS FOR COMPLIANCE

(1) Servo amplifiers and servo motors used

Use the servo amplifiers and servo motors which comply with the standard model.

Servo amplifier :MR-J2S-10A to MR-J2S-22KA

MR-J2S-10A1 to MR-J2S-40A1

Servo motor :HC-KFS□

HC-MFS□ HC-SFS□ HC-RFS□ HC-UFS□ HA-LFS□ HC-LFS□

(2) Configuration

Control box Reinforced insulating type (Note) 24VDC Reinforced power insulating No-fuse Magnetic supply transformer breaker Servo contactor motor Servo MC amplifier Μ NFB **(**

Note. The insulating transformer is not required for the 11kW or more servo amplifier.

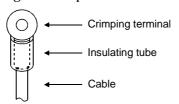
(3) Environment

Operate the servo amplifier at or above the contamination level 2 set forth in IEC60664-1. For this purpose, install the servo amplifier in a control box which is protected against water, oil, carbon, dust, dirt. etc. (IP54).

(4) Power supply

- (a) Operate the servo amplifier 7kW or less to meet the requirements of the overvoltage category II set forth in IEC60664-1. For this purpose, a reinforced insulating transformer conforming to the IEC or EN standard should be used in the power input section. Since the 11kW or more servo amplifier can be used under the conditions of the overvoltage category III set forth in IE60664-1, a reinforced insulating transformer is not required in the power input section.
- (b) When supplying interface power from external, use a 24VDC power supply which has been insulation-reinforced in I/O.

(5) Grounding


- (a) To prevent an electric shock, always connect the protective earth (PE) terminals (marked $\textcircled{\oplus}$) of the servo amplifier to the protective earth (PE) of the control box.
- (b) Do not connect two ground cables to the same protective earth (PE) terminal. Always connect the cables to the terminals one-to-one.

(c) If a leakage current breaker is used to prevent an electric shock, the protective earth (PE) terminals of the servo amplifier must be connected to the corresponding earth terminals.

(6) Wiring

(a) The cables to be connected to the terminal block of the servo amplifier must have crimping terminals provided with insulating tubes to prevent contact with adjacent terminals.

(b) Use the servo motor side power connector which complies with the EN Standard. The EN Standard compliant power connector sets are available from us as options.

(7) Auxiliary equipment and options

- (a) The no-fuse breaker and magnetic contactor used should be the EN or IEC standard-compliant products of the models described in Section 13.2.2.
- (b) The sizes of the cables described in Section 13.2.1 meet the following requirements. To meet the other requirements, follow Table 5 and Appendix C in EN60204-1.
 - Ambient temperature: 40 (104) [°C (°F)]
 - Sheath: PVC (polyvinyl chloride)
 - Installed on wall surface or open table tray
- (c) Use the EMC filter for noise reduction.

(8) Performing EMC tests

When EMC tests are run on a machine/device into which the servo amplifier has been installed, it must conform to the electromagnetic compatibility (immunity/emission) standards after it has satisfied the operating environment/electrical equipment specifications.

For the other EMC directive guidelines on the servo amplifier, refer to the EMC Installation Guidelines(IB(NA)67310).

CONFORMANCE WITH UL/C-UL STANDARD

(1) Servo amplifiers and servo motors used

Use the servo amplifiers and servo motors which comply with the standard model.

Servo amplifier :MR-J2S-10A to MR-J2S-22KA

MR-J2S-10A1 to MR-J2S-40A1

Servo motor :HC-KFS□

HC-MFS□ HC-SFS□ HC-RFS□ HC-UFS□ HA-LFS□ HC-LFS□

(2) Installation

Install a fan of 100CFM (2.8m³/min) air flow 4 in (10.16 cm) above the servo amplifier or provide cooling of at least equivalent capability.

(3) Short circuit rating

This servo amplifier conforms to the circuit whose peak current is limited to 5000A or less. Having been subjected to the short-circuit tests of the UL in the alternating-current circuit, the servo amplifier conforms to the above circuit.

(4) Capacitor discharge time

The capacitor discharge time is as listed below. To ensure safety, do not touch the charging section for 15 minutes after power-off.

Servo amplifier	Discharge time [min]
MR-J2S-10A(1) • 20A(1)	1
MR-J2S-40A(1) • 60A	2
MR-J2S-70A to 350A	3
MR-J2S-500A • 700A	5
MR-J2S-11KA	4
MR-J2S-15KA	6
MR-J2S-22KA	8

(5) Options and auxiliary equipment

Use UL/C-UL standard-compliant products.

(6) Attachment of a servo motor

For the flange size of the machine side where the servo motor is installed, refer to "CONFORMANCE WITH UL/C-UL STANDARD" in the Servo Motor Instruction Manual.

(7) About wiring protection

For installation in United States, branch circuit protection must be provided, in accordance with the National Electrical Code and any applicable local codes.

For installation in Canada, branch circuit protection must be provided, in accordance with the Canada Electrical Code and any applicable provincial codes.

<<About the manuals>>

This Instruction Manual and the MELSERVO Servo Motor Instruction Manual are required if you use the General-Purpose AC servo MR-J2S-A for the first time. Always purchase them and use the MR-J2S-A safely.

Relevant manuals

Manual name	Manual No.
MELSERVO-J2-Super Series To Use the AC Servo Safely	IB(NA)0300010
MELSERVO Servo Motor Instruction Manual	SH(NA)3181
EMC Installation Guidelines	IB(NA)67310

MEMO		

CONTENTS

1. FUNCTIONS AND CONFIGURATION	1- 1 to 1-24
1.1 Introduction	1- 1
1.2 Function block diagram	
1.3 Servo amplifier standard specifications	
1.4 Function list	
1.5 Model code definition	
1.6 Combination with servo motor	
1.7 Structure	
1.7.1 Parts identification	
1.7.2 Removal and reinstallation of the front cover	
1.8 Servo system with auxiliary equipment	
2. INSTALLATION	2- 1 to 2- 4
2.1 Environmental conditions	2- 1
2.2 Installation direction and clearances	2- 2
2.3 Keep out foreign materials	
2.4 Cable stress	
3. SIGNALS AND WIRING	3- 1 to 3- 66
3.1 Standard connection example	3- 2
3.1.1 Position control mode	
3.1.2 Speed control mode	
3.1.3 Torque control mode	
3.2 Internal connection diagram of servo amplifier	3-10
3.3 I/O signals	
3.3.1 Connectors and signal arrangements	3-11
3.3.2 Signal explanations	3-15
3.4 Detailed description of the signals	3-24
3.4.1 Position control mode	3-24
3.4.2 Speed control mode	3-29
3.4.3 Torque control mode	3-31
3.4.4 Position/speed control change mode	3-34
3.4.5 Speed/torque control change mode	3-36
3.4.6 Torque/position control change mode	3-38
3.5 Alarm occurrence timing chart	3-39
3.6 Interfaces	3-40
3.6.1 Common line	3-40
3.6.2 Detailed description of the interfaces	3-41
3.7 Input power supply circuit	3-46
3.7.1 Connection example	3-46
3.7.2 Terminals	
3.7.3 Power-on sequence	3-49
3.8 Connection of servo amplifier and servo motor	3-50
3.8.1 Connection instructions	3-50

3.8.2 Connection diagram	3-50
3.8.3 I/O terminals	3-52
3.9 Servo motor with electromagnetic brake	3-54
3.10 Grounding	3-57
3.11 Servo amplifier terminal block (TE2) wiring method	3-58
3.11.1 For the servo amplifier produced later than Jan. 2006	3-58
3.11.2 For the servo amplifier produced earlier than Dec. 2005	3-60
3.12 Instructions for the 3M connector	3-61
3.13 Power line circuit of the MR-J2S-11KA to MR-J2S-22KA	3-62
3.13.1 Connection example	3-62
3.13.2 Servo amplifier terminals	
3.13.3 Servo motor terminals	3-64
4. OPERATION	4- 1 to 4- 6
4.1 When switching power on for the first time	4- 1
4.2 Startup	
4.2.1 Selection of control mode	
4.2.2 Position control mode	
4.2.3 Speed control mode	
4.2.4 Torque control mode	
4.3 Multidrop communication	
5. PARAMETERS	5- 1 to 5- 34
5.1 Parameter list	5- 1
5.1.1 Parameter write inhibit	
5.1.2 Lists	
5.2 Detailed description	
5.2.1 Electronic gear	
5.2.2 Analog monitor	
5.2.3 Using forward/reverse rotation stroke end to change the stopping pattern	
	7 00
5.2.4 Alarm history clear	
6. DISPLAY AND OPERATION	6- 1 to 6-16
6. DISPLATAND OFERATION	0-1100-10
6.1 Display flowchart	6- 1
6.2 Status display	6- 2
6.2.1 Display examples	
6.2.2 Status display list	6- 3
6.2.3 Changing the status display screen	6- 4
6.3 Diagnostic mode	6- 5
6.4 Alarm mode	6- 7
6.5 Parameter mode	6- 8
6.6 External I/O signal display	6- 9
6.7 Output signal (DO) forced output	6-12
6.8 Test operation mode	6-13
6.8.1 Mode change	6-13
6.8.2 Log operation	6-14

6.8.3 Positioning operation	6-15
6.8.4 Motor-less operation	6-16
7. GENERAL GAIN ADJUSTMENT	7- 1 to 7-12
	~ .
7.1 Different adjustment methods	
7.1.1 Adjustment on a single servo amplifier	
7.1.2 Adjustment using MR Configurator (servo configuration software)	
7.2 Auto tuning	
7.2.1 Auto tuning mode	7- 3
7.2.2 Auto tuning mode operation	
7.2.3 Adjustment procedure by auto tuning	7- 5
7.2.4 Response level setting in auto tuning mode	7- 6
7.3 Manual mode 1 (simple manual adjustment)	7- 7
7.3.1 Operation of manual mode 1	7- 7
7.3.2 Adjustment by manual mode 1	7- 7
7.4 Interpolation mode	7-10
7.5 Differences in auto tuning between MELSERVO-J2 and MELSERVO-J2-Super	7-11
7.5.1 Response level setting	
7.5.2 Auto tuning selection	
8. SPECIAL ADJUSTMENT FUNCTIONS	8- 1 to 8-10
	0.1
8.1 Function block diagram	
8.2 Machine resonance suppression filter	
8.3 Adaptive vibration suppression control	
8.4 Low-pass filter	
8.5 Gain changing function	
8.5.1 Applications	
8.5.2 Function block diagram	
8.5.3 Parameters	
8.5.4 Gain changing operation	8- 8
9. INSPECTION	9- 1 to 9- 2
10. TROUBLESHOOTING	10- 1 to 10-14
10.1 Trouble at start-up	
10.1.1 Position control mode	
10.1.2 Speed control mode	
10.1.3 Torque control mode	
10.2 When alarm or warning has occurred	10- 6
10.2.1 Alarms and warning list	10- 6
10.2.2 Remedies for alarms	10- 7
10.2.3 Remedies for warnings	10-13
11. OLITLINE DIMENSION DRAWINGS	11 1+0 11 10
11. OUTLINE DIMENSION DRAWINGS	11- 1 to 11-10
11 1 Carva amplifiara	11 1

11.2 Connectors	11- 8
12. CHARACTERISTICS	12- 1 to 12- 8
12.1 Overload protection characteristics	12- 1
12.2 Power supply equipment capacity and generated loss	12- 2
12.3 Dynamic brake characteristics	12- 5
12.4 Encoder cable flexing life	12- 7
12.5 Inrush currents at power-on of main circuit and control circuit	12- 8
13. OPTIONS AND AUXILIARY EQUIPMENT	13- 1 to 13-54
13.1 Options	13- 1
13.1.1 Regenerative brake options	13- 1
13.1.2 Brake unit	13-10
13.1.3 Power regeneration converter	13-12
13.1.4 External dynamic brake	13-15
13.1.5 Cables and connectors	
13.1.6 Junction terminal block (MR-TB20)	13-26
13.1.7 Maintenance junction card (MR-J2CN3TM)	13-28
13.1.8 Battery (MR-BAT, A6BAT)	
13.1.9 MR Configurator (Servo configurations software)	13-30
13.1.10 Power regeneration common converter	
13.1.11 Heat sink outside mounting attachment (MR-JACN)	
13.2 Auxiliary equipment	
13.2.1 Recommended wires	
13.2.2 No-fuse breakers, fuses, magnetic contactors	13-42
13.2.3 Power factor improving reactors	
13.2.4 Power factor improving DC reactors	
13.2.5 Relays	
13.2.6 Surge absorbers	13-44
13.2.7 Noise reduction techniques	
13.2.8 Leakage current breaker	
13.2.9 EMC filter	
13.2.10 Setting potentiometers for analog inputs	
14. COMMUNICATION FUNCTIONS	14- 1 to 14- 28
14.1 Configuration	14- 1
14.1.1 RS-422 configuration	14- 1
14.1.2 RS-232C configuration	14- 2
14.2 Communication specifications	14- 3
14.2.1 Communication overview	14- 3
14.2.2 Parameter setting	14- 4
14.3 Protocol	
14.4 Character codes	14- 7
14.5 Error codes	14- 8
14.6 Checksum	14- 8
14.7 Time-out operation	
14.8 Retry operation	

14.9 Initialization	14-10
14.10 Communication procedure example	14-10
14.11 Command and data No. list	14-11
14.11.1 Read commands	14-11
14.11.2 Write commands	14-12
14.12 Detailed explanations of commands	14-14
14.12.1 Data processing	14-14
14.12.2 Status display	14-16
14.12.3 Parameter	14-17
14.12.4 External I/O pin statuses (DIO diagnosis)	14-19
14.12.5 Disable/enable of external I/O signals (DIO)	14-20
14.12.6 External input signal ON/OFF (test operation)	
14.12.7 Test operation mode	14-22
14.12.8 Output signal pin ON/OFF output signal (DO) forced output	
14.12.9 Alarm history	
14.12.10 Current alarm	14-26
14.12.11 Other commands	14-27
15. ABSOLUTE POSITION DETECTION SYSTEM	15- 1 to 15- 66
15.1 Outline	15 1
15.1.1 Features	
15.1.2 Restrictions.	
15.1.2 Restrictions	
15.3 Battery installation procedure	
15.4 Standard connection diagram	
15.4 Standard connection diagram 15.5 Signal explanation	
15.6 Startup procedure	
15.7 Absolute position data transfer protocol	
15.7.1 Data transfer procedure	
15.7.3 Home position setting	
15.7.4 Use of servo motor with electromagnetic brake	
15.7.5 How to process the absolute position data at detection of stroke end	
15.8 Examples of use	
15.8.1 MELSEC-A1S (A1SD71)	
15.8.2 MELSEC FX(2N)-32MT (FX(2N)-1PG)	
15.8.3 MELSEC A1SD75(AD75)	
15.9 Confirmation of absolute position detection data	
15.10 Absolute position data transfer errors	
15.10.1 Corrective actions	
15.10.2 Error resetting conditions	15-65
Appendix	App- 1 to App- 4
App 1. Signal arrangement recording sheets	Ann- 1
App 2. Status display block diagram	
App 3. Combination of servo amplifier and servo motor	

Optional Servo Motor Instruction Manual CONTENTS

The rough table of contents of the optional MELSERVO Servo Motor Instruction Manual is introduced here for your reference. Note that the contents of the Servo Motor Instruction Manual are not included in the Servo Amplifier Instruction Manual.

1. INTRODUCTION
2. INSTALLATION
3. CONNECTORS USED FOR SERVO MOTOR WIRING
·
4. INSPECTION
·
5. SPECIFICATIONS
6. CHARACTERISTICS
7. OUTLINE DIMENSION DRAWINGS
8. CALCULATION METHODS FOR DESIGNING

1. FUNCTIONS AND CONFIGURATION

1.1 Introduction

The Mitsubishi MELSERVO-J2-Super series general-purpose AC servo is based on the MELSERVO-J2 series and has further higher performance and higher functions.

It has position control, speed control and torque control modes. Further, it can perform operation with the control modes changed, e.g. position/speed control, speed/torque control and torque/position control. Hence, it is applicable to a wide range of fields, not only precision positioning and smooth speed control of machine tools and general industrial machines but also line control and tension control.

As this new series has the RS-232C or RS-422 serial communication function, a MR Configurator (servo configuration software)-installed personal computer or the like can be used to perform parameter setting, test operation, status display monitoring, gain adjustment, etc.

With real-time auto tuning, you can automatically adjust the servo gains according to the machine.

The MELSERVO-J2-Super series servo motor is equipped with an absolute position encoder which has the resolution of 131072 pulses/rev to ensure more accurate control as compared to the MELSERVO-J2 series. Simply adding a battery to the servo amplifier makes up an absolute position detection system. This makes home position return unnecessary at power-on or alarm occurrence by setting a home position once.

(1) Position control mode

An up to 500kpps high-speed pulse train is used to control the speed and direction of a motor and execute precision positioning of 131072 pulses/rev resolution.

The position smoothing function provides a choice of two different modes appropriate for a machine, so a smoother start/stop can be made in response to a sudden position command.

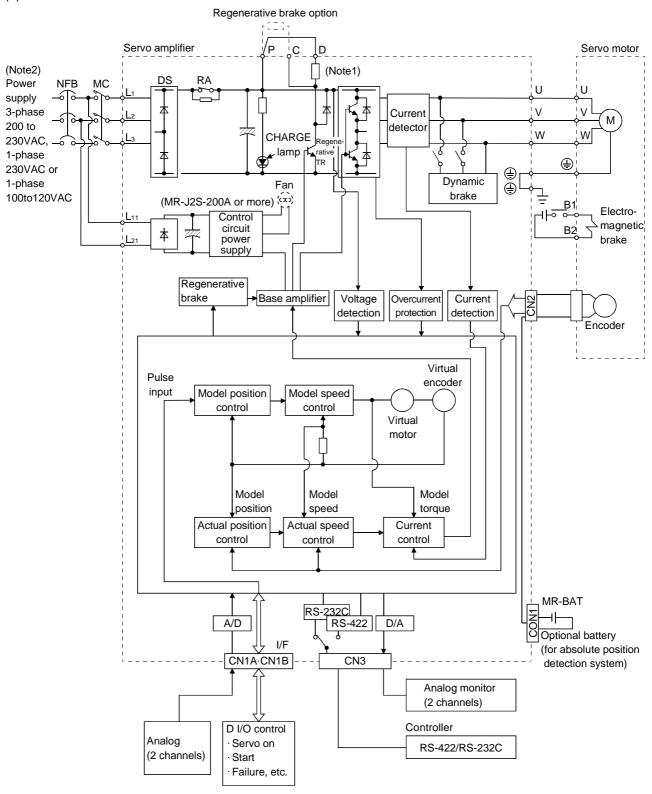
A torque limit is imposed on the servo amplifier by the clamp circuit to protect the power transistor in the main circuit from overcurrent due to sudden acceleration/deceleration or overload. This torque limit value can be changed to any value with an external analog input or the parameter.

(2) Speed control mode

An external analog speed command (0 to $\pm 10 \text{VDC}$) or parameter-driven internal speed command (max. 7 speeds) is used to control the speed and direction of a servo motor smoothly.

There are also the acceleration/deceleration time constant setting in response to speed command, the servo lock function at a stop time, and automatic offset adjustment function in response to external analog speed command.

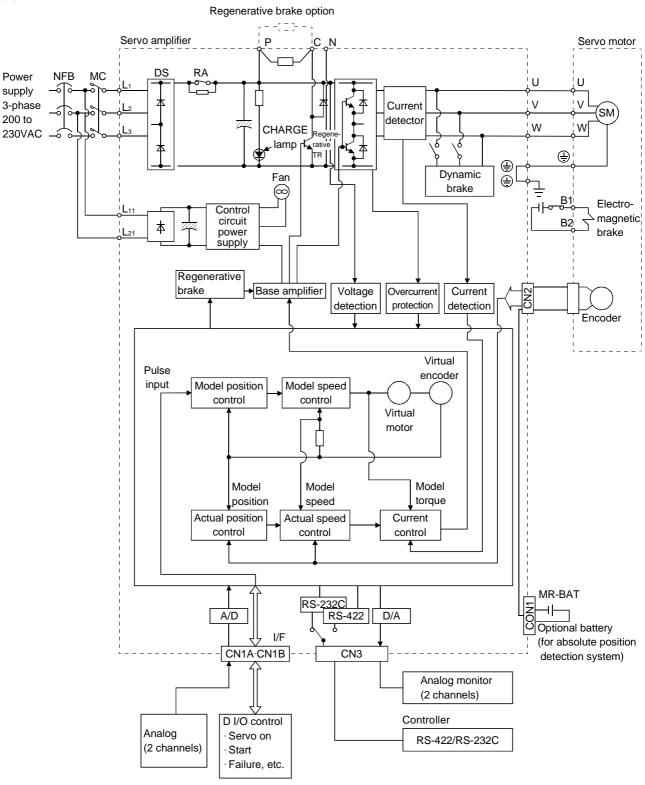
(3) Torque control mode

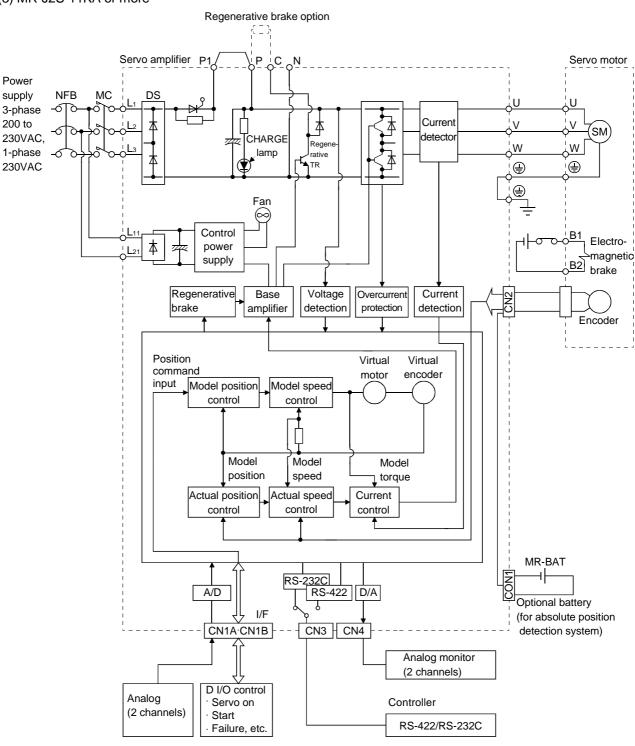

An external analog torque command (0 to $\pm 8 \text{VDC}$) or parameter-driven internal torque command is used to control the torque output by the servo motor.

To protect misoperation under no load, the speed limit function (external or internal setting) is also available for application to tension control, etc.

1.2 Function block diagram

The function block diagram of this servo is shown below.


(1) MR-J2S-350A or less


Note 1. The built-in regenerative brake resistor is not provided for the MR-J2S-10A(1).

2. For 1-phase 230VAC, connect the power supply to L₁,L₂ and leave L₃ open. L₃ is not provided for a 1-phase 100 to120VAC power supply.

(2) MR-J2S-500A • MR-J2S-700A

(3) MR-J2S-11KA or more

1.3 Servo amplifier standard specifications

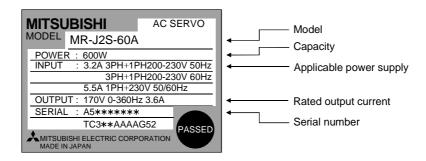
Servo Amplifier																			
		MR.	-J2S-□	10A	20A	40A	60A	70A	100A	200A	350A	500A	700A	11KA	15KA	22KA	10A1	20A1	40A1
Item																			
	Voltage/frequency			50/60	50/60Hz or 1-phase 3-phase 200 to 230VAC, 50/60Hz 120V							1-ph 120V 50/60		00 to					
Power supply	Permissible voltage fluctuation			3-phase 200 to 230VAC: 170 to 253VAC 1-phase 230VAC: 207 to 253VAC				3-phase 170 to 253VAC						_	1-phase 85 to 127VAC				
I	Permissible fre	equency fluctuat	ion	Within ±5%															
	Power supply capacity			Refer to Section12.2															
	Inrush current									Refe	r to S	ection	12.5						
Con	trol system						S	ine-w	ave P	WM c	ontro	l, curr	ent co	ntrol	syste	m			
Dyn	amic brake							Bui	lt-in					Exte	rnal c	ption	I	Built-i	in
Protective functions				thern brake	nal re	lay), r prot	servo	moto:	r over ervolt	heat age, i	prote	ction,	enco	off, o der er wer f	ror p	rotecti	ion, r	egene	rative
le	Max. input pul	se frequency				50	Okpps	(for d	liffere	ntial ı	receiv	er), 20	00kpp	s (for	open	collect	or)		
Position control mode	Command pulse multiplying factor			500kpps (for differential receiver), 200kpps (for open collector) Electronic gear A:1 to 65535 • 131072 B:1 to 65535, 1/50 < A/B < 500															
cont	In-position ran	ige setting		0 to ±10000 pulse (command pulse unit)															
sitior	Error excessive			(Note) ±2.5 revolutions															
Pc	Torque limit			Set by parameter setting or external analog input (0 to +10VDC/maximum torque)															
ode	Speed control r	range		Analog speed command 1: 2000, internal speed command 1: 5000															
l mo	Analog speed c	command input		0 to ±10VDC / Rated speed															
Speed control mode	Speed fluctuati	tuation ratio			±0.01% or less (load fluctuation 0 to 100%) 0% or less (power fluctuation ±10%) ±0.2% max.(ambient temperature 25±10℃) for external speed setting only														
Sp	Torque limit			Se	t by p	aram	eter s	etting	or ex	terna	l ana	log in	put (0) to +1	0VD0	C/max	imun	ı torq	ue)
Tore	- Indiog to	rque command i	nput	Set by parameter setting or external analog input (0 to +10VDC/maximum torque) 0 to ±8VDC / Maximum torque (input impedance 10 to 12kΩ)															
cont mod	G 111	it		Set by parameter setting or external analog input (0 to ±10VDC/Rated speed)															
Stru	ıcture				Self-co	ooled,	open ((IP00)			Ford	e-cool	ing, o	pen (I	P00)			lf-coo en(IP	
		Operation	[°C]	0 to +	55 (n	on-fre	ezing)												
	Ambient	орегация	[°F]	32 to	+131	(non-f	reezir	ng)											
	temperature	Storage	[°C]	-20 to +65 (non-freezing)															
nt			[°F]	-4 to	+149) (non	-freez	ing)											
Environment	Ambient humidity	Operation Storage		90%RH or less (non-condensing)															
Envi	Ambient			Indoors (no direct sunlight)															
·	Altitude			Free from corrosive gas, flammable gas, oil mist, dust and dirt Max. 1000m (3280ft) above sea level															
	Vibration			5.9 [m/s²] or less															
			19.4 [ft/s²] or less																
Mas	ss		[kg] [lb]	0.7 1.5	0.7 1.5	2.4	2.4	1.7 3.75	1.7 3.75	2.0 4.4	2.0	4.9 10.8	15 33.1	16 35.3	16 35.3	20 44.1	0.7 1.5	0.7 1.5	2.4
											•								

Note. The error excessive detection for ±2.5 revolutions is available only when the servo amplifier of software version B0 or later is used. When the software version is earlier than B0, the error excessive detection level of that servo amplifier is ±10 revolutions.

1.4 Function list

The following table lists the functions of this servo. For details of the functions, refer to the reference field.

Function	Description	(Note) Control mode	Reference
Position control mode	This servo is used as position control servo.	P	Section 3.1.1 Section 3.4.1 Section 4.2.2
Speed control mode	This servo is used as speed control servo.	S	Section 3.1.2 Section 3.4.2 Section 4.2.3
Torque control mode	This servo is used as torque control servo.	Т	Section 3.1.3 Section 3.4.3 Section 4.2.4
Position/speed control change mode	Using external input signal, control can be switched between position control and speed control.	P/S	Section 3.4.4
Speed/torque control change mode	Using external input signal, control can be switched between speed control and torque control.	S/T	Section 3.4.5
Torque/position control change mode	Using external input signal, control can be switched between torque control and position control.	T/P	Section 3.4.6
High-resolution encoder	High-resolution encoder of 131072 pulses/rev is used as a servo motor encoder.	P, S, T	
Absolute position detection system	Merely setting a home position once makes home position return unnecessary at every power-on.	P	Chapter 15
Gain changing function	You can switch between gains during rotation and gains during stop or use an external signal to change gains during operation.	P, S	Section 8.5
Adaptive vibration suppression control	Servo amplifier detects mechanical resonance and sets filter characteristics automatically to suppress mechanical vibration.	P, S, T	Section 8.3
Low-pass filter	Suppresses high-frequency resonance which occurs as servo system response is increased.	P, S, T	Section 8.4
Machine analyzer function	Analyzes the frequency characteristic of the mechanical system by simply connecting a MR Configurator (servo configuration) software-installed personal computer and servo amplifier.	P	
Machine simulation	Can simulate machine motions on a personal computer screen on the basis of the machine analyzer results.	P	
Gain search function	Personal computer changes gains automatically and searches for overshoot-free gains in a short time.	P	
Slight vibration suppression control	Suppresses vibration of ±1 pulse produced at a servo motor stop.	P	Section 7.5
Electronic gear	Input pulses can be multiplied by 1/50 to 50.	P	Parameters No. 3, 4
Auto tuning	Automatically adjusts the gain to optimum value if load applied to the servo motor shaft varies. Higher in performance than MR-J2 series servo amplifier.	P, S	Chapter 7
Position smoothing	Speed can be increased smoothly in response to input pulse.	P	Parameter No. 7
S-pattern acceleration/ deceleration time constant	Speed can be increased and decreased smoothly.	S, T	Parameter No. 13
Regenerative brake option	Used when the built-in regenerative brake resistor of the servo amplifier does not have sufficient regenerative capability for the regenerative power generated.	P, S, T	Section 13.1.1
Brake unit	Used when the regenerative brake option cannot provide enough regenerative power. Can be used with the MR-J2S-500A to MR-J2S-22KA.	P, S, T	Section 13.1.2


Function	Description	(Note) Control mode	Reference
Return converter	Used when the regenerative brake option cannot provide enough regenerative power. Can be used with the MR-J2S-500A to MR-J2S-22KA.	P, S, T	Section 13.1.3
Alarm history clear	Alarm history is cleared.	P, S, T	Parameter No. 16
Restart after instantaneous power failure	If the input power supply voltage had reduced to cause an alarm but has returned to normal, the servo motor can be restarted by merely switching on the start signal.	S	Parameter No. 20
Command pulse selection	Command pulse train form can be selected from among four different types.	P	Parameter No. 21
Input signal selection	Forward rotation start, reverse rotation start, servo-on (SON) and other input signals can be assigned to any pins.	P, S, T	Parameters No. 43 to 48
Torque limit	Servo motor torque can be limited to any value.	P, S	Section 3.4.1 (5) Parameter No. 28
Speed limit	Servo motor speed can be limited to any value.	Т	Section 3.4.3 (3) Parameter No. 8 to 10,72 to 75
Status display	Servo status is shown on the 5-digit, 7-segment LED display	P, S, T	Section 6.2
External I/O signal display	ON/OFF statuses of external I/O signals are shown on the display.	P, S, T	Section 6.6
Output signal (DO) forced output	Earth status		Section 6.7
Automatic VC offset	Voltage is automatically offset to stop the servo motor if it does not come to a stop at the analog speed command (VC) or analog speed limit (VLA) of 0V.	S, T	Section 6.3
Test operation mode	JOG operation • positioning operation • motor-less operation • DO forced output.	P, S, T	Section 6.8
Analog monitor output	Servo status is output in terms of voltage in real time.	P, S, T	Parameter No. 17
MR Configurator	Using a personal computer, parameter setting, test operation, status display, etc. can be performed.	P, S, T	Section 13.1.9
Alarm code output	If an alarm has occurred, the corresponding alarm number is output in 3-bit code.	P, S, T	Section 10.2.1

Note. P: Position control mode, S: Speed control mode, T: Torque control mode

P/S: Position/speed control change mode, S/T: Speed/torque control change mode, T/P: Torque/position control change mode

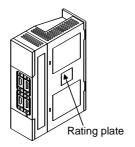
1.5 Model code definition

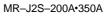
(1) Rating plate

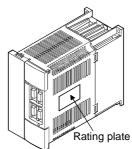
(2) Model

With no regenerative resistor

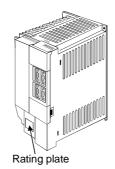
Symbol	Description
- PX	Indicates a servo amplifier of 11 to 22kw that does not use a regenerative resistor as standard accessory.

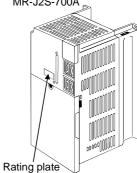

- Power Supply


Symbol	Power supply
None	3-phase 200 to 230VAC (Note1) 1-phase 230VAC
(Note2)	1-phase 100V to 120VAC


Note 1. 1-phase 230V is supported by 750W or less. 2. 1-phase 100V to 120V is supported by 400W or less.

General-purpose interface


MR-J2S-100A or less



MR-J2S-500A

MR-J2S-700A

Rated output

Symbol	Rated output [kW]	Symbol	Rated output [kW]
10	0.1	350	3.5
20	0.2	500	5
40	0.4	700	7
60	0.6	11k	11
70	0.75	15k	15
100	1	22k	22
200	2		

MR-J2S-11KA - 15KA

MR-J2S-22KA

Rating plate

1.6 Combination with servo motor

The following table lists combinations of servo amplifiers and servo motors. The same combinations apply to the models with electromagnetic brakes and the models with reduction gears.

	Servo motors							
0			HC-SFS□			HC-UFS□		
Servo amplifier	HC-KFS□	HC-MFS□	(Note1) 1000r/min	2000r/min	(Note1) 3000r/min	HC-RFS□	2000r/min	3000r/min
MR-J2S-10A(1)	053 • 13	053 • 13						13
MR-J2S-20A(1)	23	23						23
MR-J2S-40A(1)	43	43						43
MR-J2S-60A				52	53			
MR-J2S-70A	(Note1) 73	73					72	73
MR-J2S-100A			81	102	103			
MR-J2S-200A			121 • 201	152 • 202	153 • 203	103 • 153	152	
MR-J2S-350A			301	352	353	(Note1)203	(Note1)202	
MR-J2S-500A				(Note1)502		(Note1) 353 • 503	(Note1) 352 · 502	
MR-J2S-700A				(Note1)702				

	Servo motors				
Servo amplifier		(Note1)			
	1000r/min	1500r/min	2000r/min	HC-LFS□	
MR-J2S-60A				52	
MR-J2S-100A				102	
MR-J2S-200A				152	
MR-J2S-350A				202	
MR-J2S-500A			(Note1)502	302	
MR-J2S-700A	(Note2)601	(Note2)701M	(Note1)702		
MR-J2S-11KA	801 · 12K1	11K1M	11K2		
MR-J2S-15KA	15K1	15K1M	15K2		
MR-J2S-22KA	20K1 - 25K1	22K1M	22K2		

Note1. These servo motors may not be connected depending on the production time of the servo amplifier. Please refer to app3.

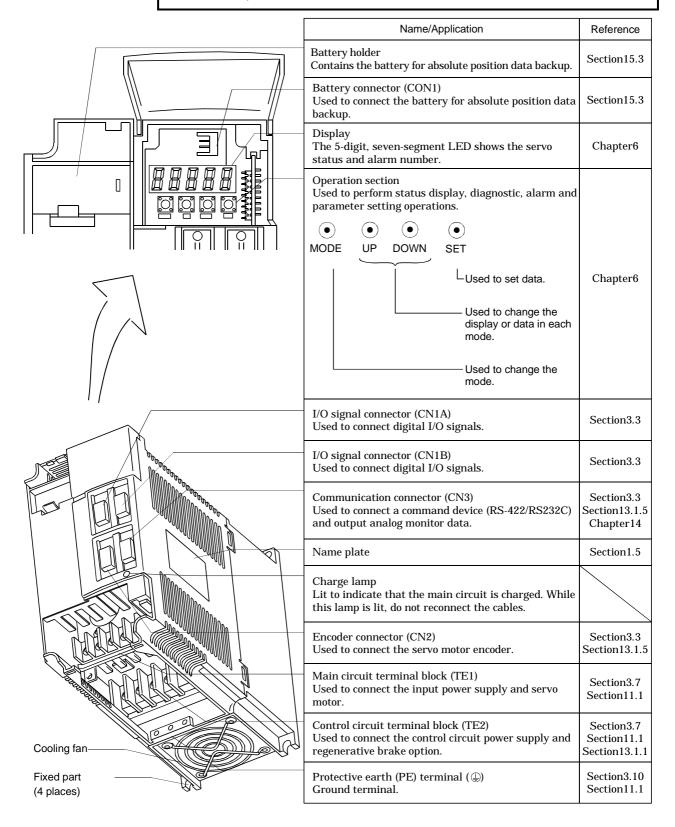
^{2.} Consult us since the servo amplifier to be used with any of these servo motors is optional.

1.7 Structure

1.7.1 Parts identification

(1) MR-J2S-100A or less

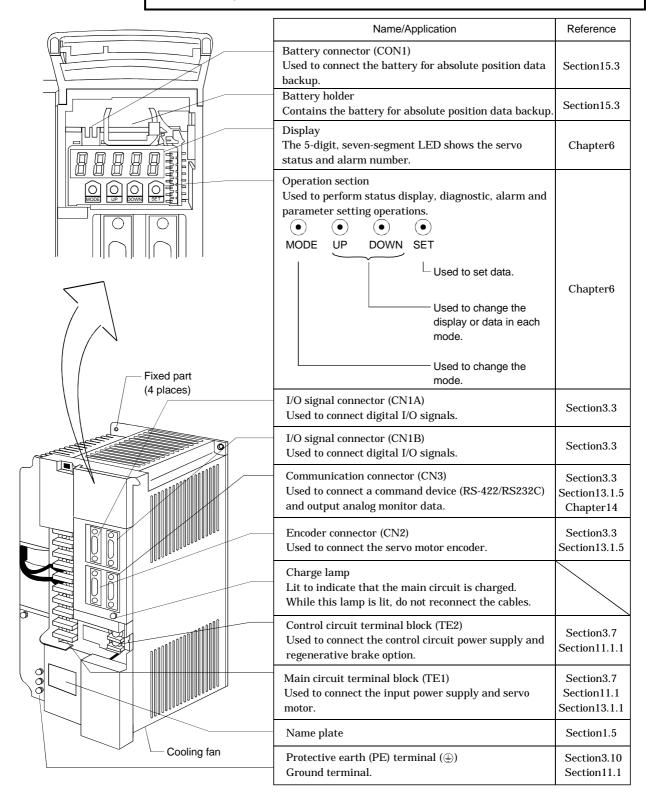
POINT


• The servo amplifier is shown without the front cover. For removal of the front cover, refer to Section 1.7.2.

	Name/Application	Reference
	Battery holder Contains the battery for absolute position data backup.	Section15.3
	Battery connector (CON1) Used to connect the battery for absolute position data backup.	Section15.3
	Display The 5-digit, seven-segment LED shows the servo status and alarm number.	Chapter6
	Operation section Used to perform status display, diagnostic, alarm and parameter setting operations.	
	MODE UP DOWN SET	
	Used to set data.	Chapter6
	Used to change the display or data in each mode.	
	Used to change the mode.	
	I/O signal connector (CN1A) Used to connect digital I/O signals.	Section3.3
	I/O signal connector (CN1B) Used to connect digital I/O signals.	Section3.3
	Communication connector (CN3) Used to connect a command device (RS-422/RS-232C) and output analog monitor data.	Section3.3 Chapter14 Section13.1.5
	Name plate	Section1.5
	Charge lamp Lit to indicate that the main circuit is charged. While this lamp is lit, do not reconnect the cables.	
	Encoder connector (CN2) Used to connect the servo motor encoder.	Section3.3 Section13.1.5
	Main circuit terminal block (TE1) Used to connect the input power supply and servo motor.	Section3.7 Section11.1
	Control circuit terminal block (TE2) Used to connect the control circuit power supply and regenerative brake option.	Section3.7 Section11.1 Section13.1.1
Fixed part(2places) (For MR-J2S-70A •100A 3 places)	Protective earth (PE) terminal (⊕) Ground terminal.	Section3.10 Section11.1
(FOI WK-JZS-70A • 100A 3 PIACES)		

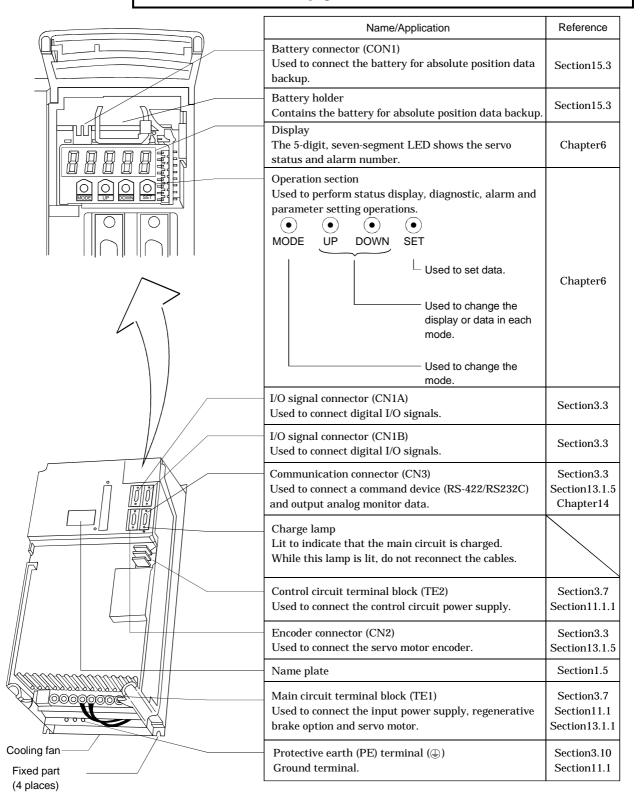
(2) MR-J2S-200A • MR-J2S-350A

POINT


• The servo amplifier is shown without the front cover. For removal of the front cover, refer to Section 1.7.2.

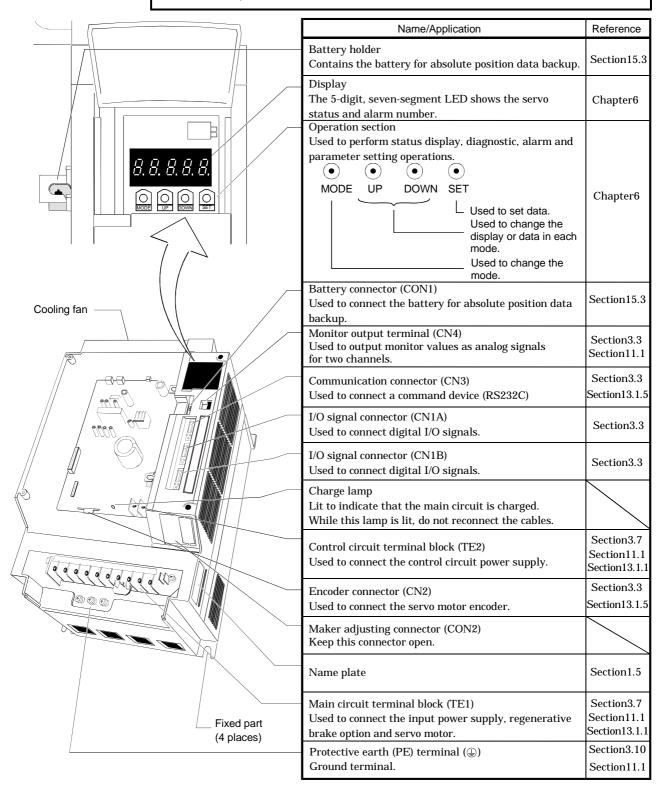
(3) MR-J2S-500A

POINT


• The servo amplifier is shown without the front cover. For removal of the front cover, refer to Section 1.7.2.

(4) MR-J2S-700A

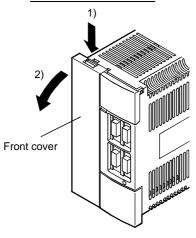
POINT


• The servo amplifier is shown without the front cover. For removal of the front cover, refer to next page.

(5) MR-J2S-11KA or more

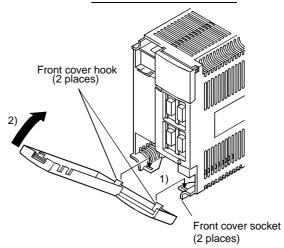
POINT

• The servo amplifier is shown without the front cover. For removal of the front cover, refer to section 1. 7. 2.


1.7.2 Removal and reinstallation of the front cover

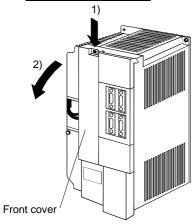
CAUTION

 To avoid the risk of an electric shock, do not open the front cover while power is on.

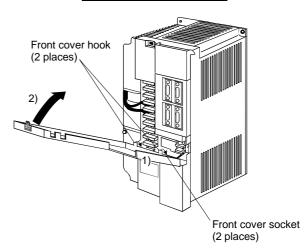

(1) For MR-J2S-350A or less

Removal of the front cover

- 1) Hold down the removing knob.
- 2) Pull the front cover toward you.


Reinstallation of the front cover

- 1) Insert the front cover hooks into the front cover sockets of the servo amplifier.
- Press the front cover against the servo amplifier until the removing knob clicks.


(2) For MR-J2S-500A

Removal of the front cover

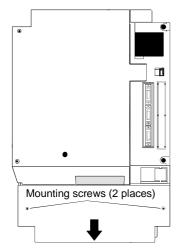
- 1) Hold down the removing knob.
- 2) Pull the front cover toward you.

Reinstallation of the front cover

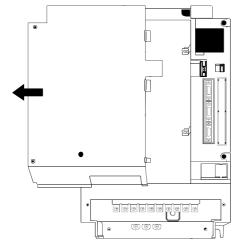
- 1) Insert the front cover hooks into the front cover sockets of the servo amplifier.
- Press the front cover against the servo amplifier until the removing knob clicks.

(3) For MR-J2S-700A

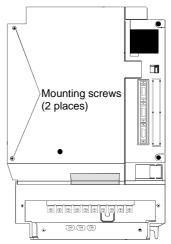
Removal of the front cover


B) 2) 1) A) Front cover socket (2 places)

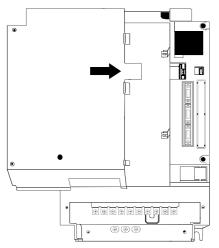
- 1) Push the removing knob A) or B), and put you finger into the front hole of the front cover.
- 2) Pull the front cover toward you.
- 1) Insert the two front cover hooks at the bottom into the sockets of the servo amplifier.
- 2) Press the front cover against the servo amplifier until the removing knob clicks.


Reinstallation of the front cover

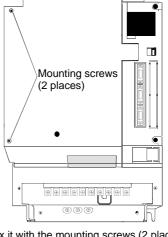
(4) For MR-J2S-11KA or more


Removal of the front cover

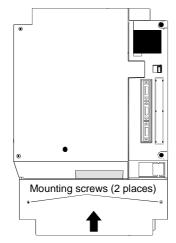
1) Remove the front cover mounting screws (2 places) and remove the front cover.



3) Remove the front cover by drawing it in the direction of arrow.



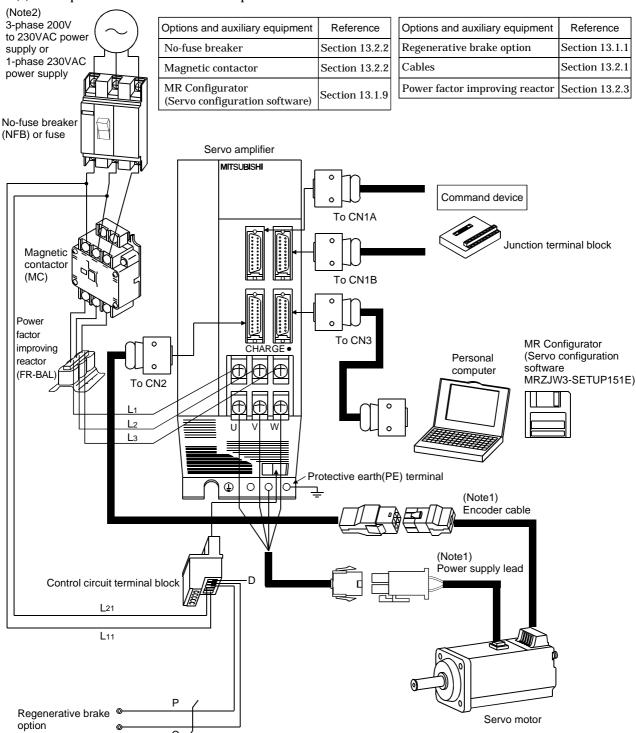
2) Remove the front cover mounting screws (2 places).


Reinstallation of the front cover

1) Insert the front cover in the direction of arrow.

2) Fix it with the mounting screws (2 places).

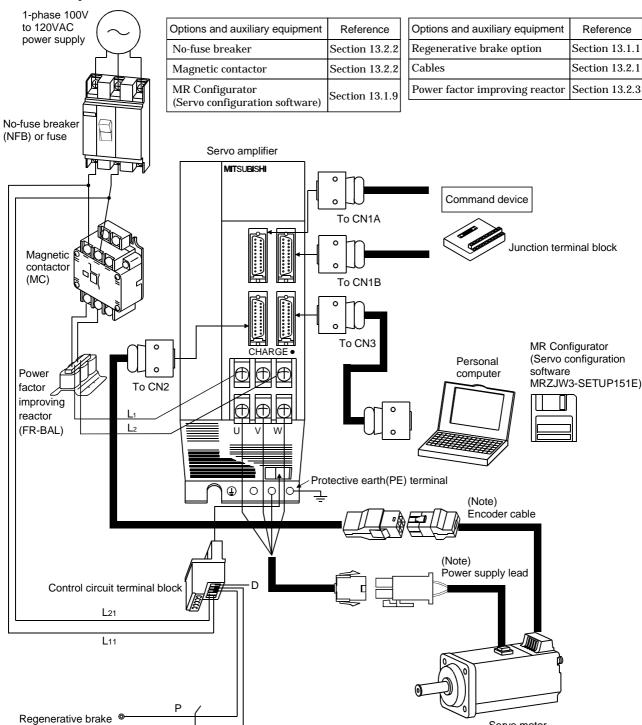
3) Fit the front cover and fix it with the mounting screws (2 places).


1.8 Servo system with auxiliary equipment

MARNING

To prevent an electric shock, always connect the protective earth (PE) terminal (terminal marked \oplus) of the servo amplifier to the protective earth (PE) of the control box

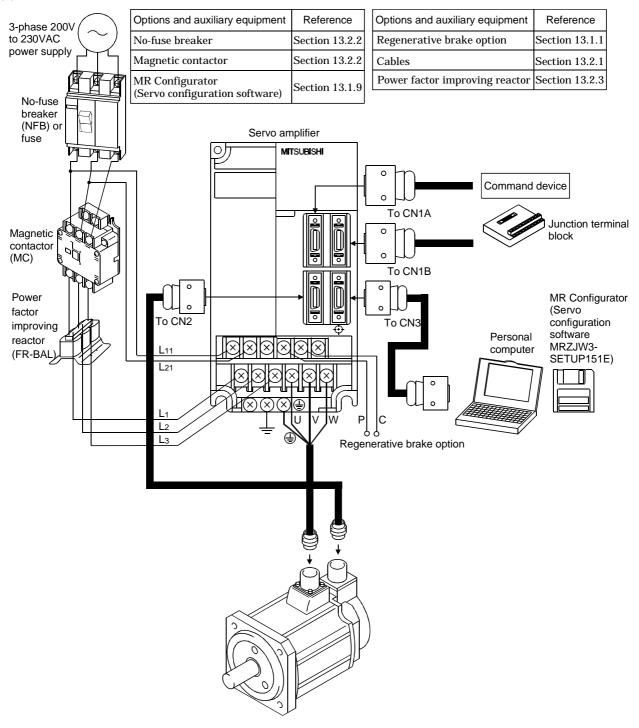
(1) MR-J2S-100A or less


(a) For 3-phase 200V to 230VAC or 1-phase 230VAC

Note 1. The HC-SFS, HC-RFS series have cannon connectors.

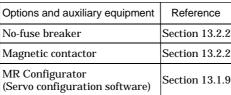
^{2.} A 1-phase 230VAC power supply may be used with the servo amplifier of MR-J2S-70A or less. For 1-phase 230VAC, connect the power supply to L₁ •L₂ and leave L₃ open.

(b) For 1-phase 100V to 120VAC



Note. The HC-SFS, HC-RFS series have cannon connectors.

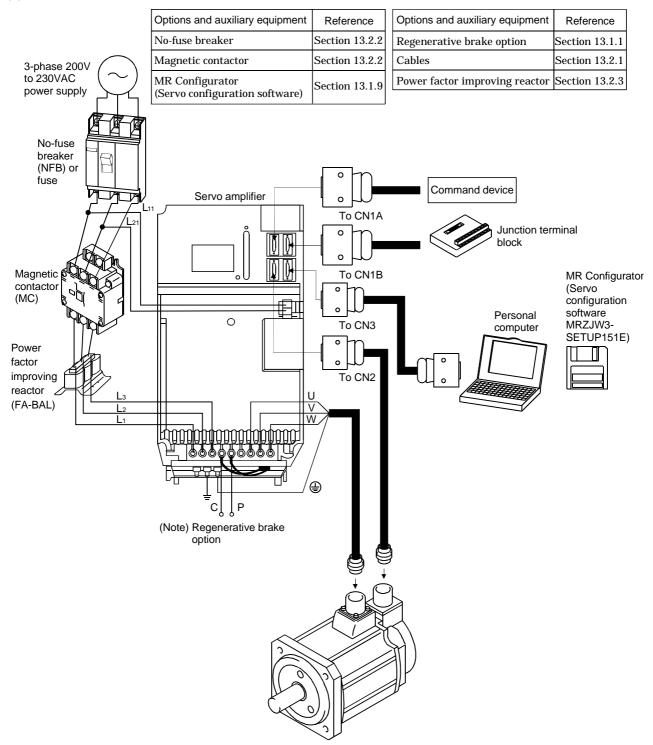
option


Servo motor

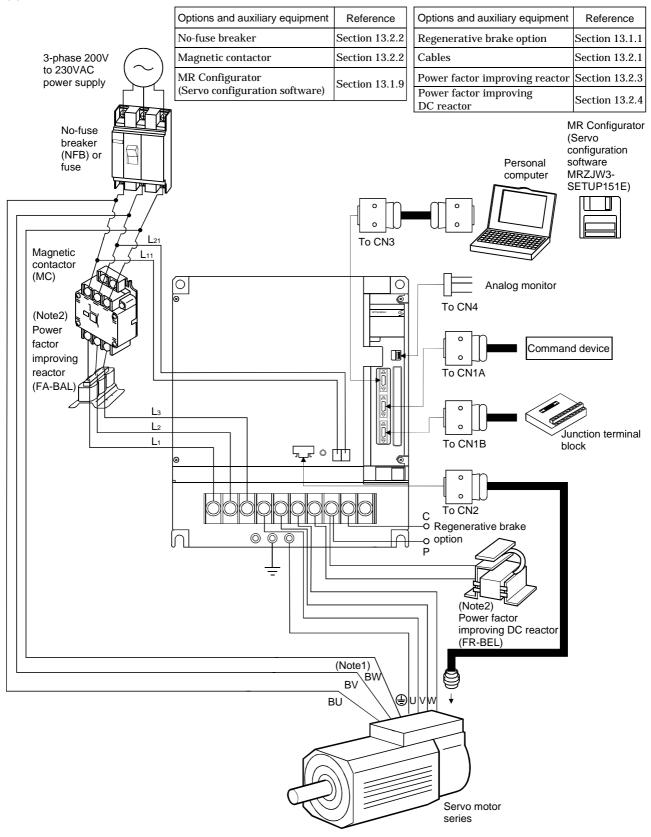
(2) MR-J2S-200A • MR-J2S-350A or more

(3) MR-J2S-500A

3-phase 200V to 230VAC



Options and auxiliary equipment	Reference
Regenerative brake option	Section 13.1.1
Cables	Section 13.2.1
Power factor improving reactor	Section 13.2.3


Note. When using the regenerative brake option, remove the lead wires of the built-in regenerative brake resistor.

(4) MR-J2S-700A

Note. When using the regenerative brake option, remove the lead wires of the built-in regenerative brake resistor.

(5) MR-J2S-11KA or more

Note1. There is no BW when the HA-LFS11K2 is used.

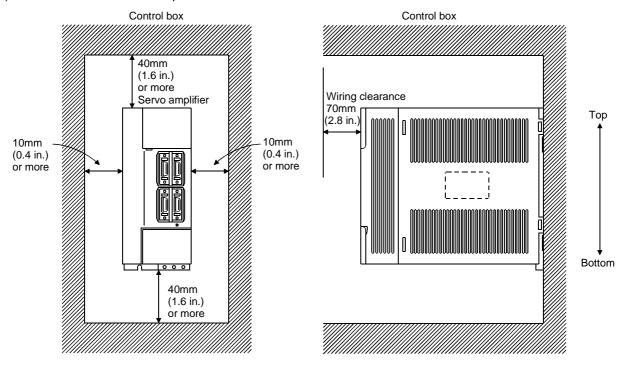
2. Use either the FR-BAL or FR-BEL power factor improving reactor.

2. INSTALLATION

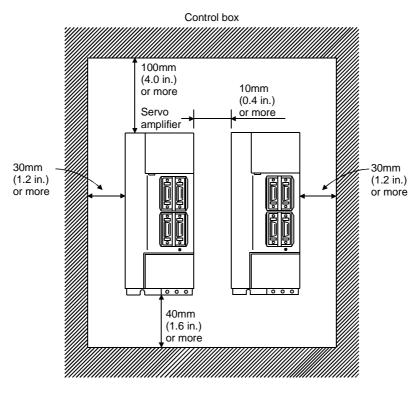
CAUTION

- Stacking in excess of the limited number of products is not allowed.
- Install the equipment to incombustibles. Installing them directly or close to combustibles will led to a fire.
- Install the equipment in a load-bearing place in accordance with this Instruction Manual.
- Do not get on or put heavy load on the equipment to prevent injury.
- Use the equipment within the specified environmental condition range.
- Provide an adequate protection to prevent screws, metallic detritus and other conductive matter or oil and other combustible matter from entering the servo amplifier.
- Do not block the intake/exhaust ports of the servo amplifier. Otherwise, a fault may occur.
- Do not subject the servo amplifier to drop impact or shock loads as they are precision equipment.
- Do not install or operate a faulty servo amplifier.
- When the product has been stored for an extended period of time, consult Mitsubishi.
- When treating the servo amplifier, be careful about the edged parts such as the corners of the servo amplifier.

2.1 Environmental conditions


Env	rironment		Conditions					
	Onemation	[°C]	0 to +55 (non-freezing)					
Ambient	[2]		32 to +131 (non-freezing)					
temperature	Storage		-20 to +65 (non-freezing)					
Storage [°F			−4 to +149 (non-freezing)					
Ambient	Operation		000/DH 1 (1 1)					
humidity	Storage		90%RH or less (non-condensing)					
Ambience			Indoors (no direct sunlight) Free from corrosive gas, flammable gas, oil mist, dust and dirt					
Altitude	Altitude		Max. 1000m (3280 ft) above sea level					
Vibration [m/s ²		$[m/s^2]$	$5.9 \text{ [m/s}^2] \text{ or less}$					
vibration		[ft/s ²]	19.4 [ft/s ²] or less					

2.2 Installation direction and clearances


- The equipment must be installed in the specified direction. Otherwise, a fault may occur.
- Leave specified clearances between the servo amplifier and control box inside walls or other equipment.

(1) Installation of one servo amplifier

(2) Installation of two or more servo amplifiers

Leave a large clearance between the top of the servo amplifier and the internal surface of the control box, and install a fan to prevent the internal temperature of the control box from exceeding the environmental conditions.

(3) Others

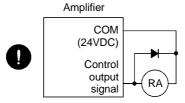
When using heat generating equipment such as the regenerative brake option, install them with full consideration of heat generation so that the servo amplifier is not affected.

Install the servo amplifier on a perpendicular wall in the correct vertical direction.

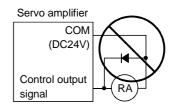
2.3 Keep out foreign materials

- (1) When installing the unit in a control box, prevent drill chips and wire fragments from entering the servo amplifier.
- (2) Prevent oil, water, metallic dust, etc. from entering the servo amplifier through openings in the control box or a fan installed on the ceiling.
- (3) When installing the control box in a place where there are much toxic gas, dirt and dust, conduct an air purge (force clean air into the control box from outside to make the internal pressure higher than the external pressure) to prevent such materials from entering the control box.

2.4 Cable stress


- (1) The way of clamping the cable must be fully examined so that flexing stress and cable's own mass stress are not applied to the cable connection.
- (2) For use in any application where the servo motor moves, fix the cables (encoder, power supply, brake) supplied with the servo motor, and flex the optional encoder cable or the power supply and brake wiring cables. Use the optional encoder cable within the flexing life range. Use the power supply and brake wiring cables within the flexing life of the cables.
- (3) Avoid any probability that the cable sheath might be cut by sharp chips, rubbed by a machine corner or stamped by workers or vehicles.
- (4) For installation on a machine where the servo motor will move, the flexing radius should be made as large as possible. Refer to section 12.4 for the flexing life.

3. SIGNALS AND WIRING


WARNING

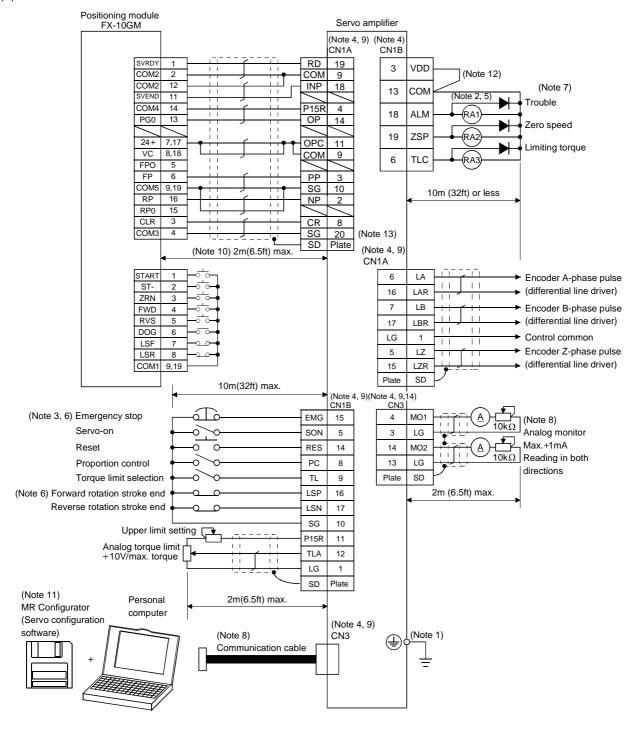
- Any person who is involved in wiring should be fully competent to do the work.
- Before starting wiring, switch power off, then wait for more than 15 minutes, and after the charge lamp has gone off, make sure that the voltage is safe in the tester or like. Otherwise, you may get an electric shock.
- Ground the servo amplifier and the servo motor securely.
- Do not attempt to wire the servo amplifier and servo motor until they have been installed. Otherwise, you may get an electric shock.
- The cables should not be damaged, stressed excessively, loaded heavily, or pinched. Otherwise, you may get an electric shock.
- Wire the equipment correctly and securely. Otherwise, the servo motor may misoperate, resulting in injury.
- Connect cables to correct terminals to prevent a burst, fault, etc.
- Ensure that polarity (+, -) is correct. Otherwise, a burst, damage, etc. may occur.
- The surge absorbing diode installed to the DC relay designed for control output should be fitted in the specified direction. Otherwise, the signal is not output due to a fault, disabling the emergency stop (EMG) and other protective circuits.

Servo

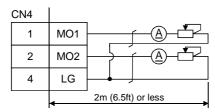
- Use a noise filter, etc. to minimize the influence of electromagnetic interference, which may be given to electronic equipment used near the servo amplifier.
- Do not install a power capacitor, surge suppressor or radio noise filter (FR-BIF option) with the power line of the servo motor.
- When using the regenerative brake resistor, switch power off with the alarm signal.
 Otherwise, a transistor fault or the like may overheat the regenerative brake resistor, causing a fire.
- Do not modify the equipment.

POINT

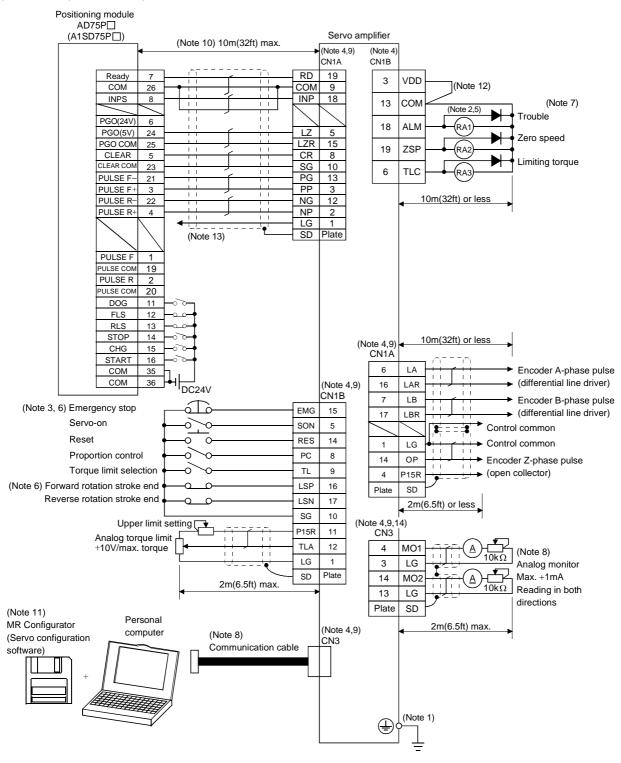
• CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of the connectors will lead to a failure. Connect them correctly.

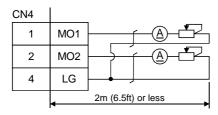

3.1 Standard connection example

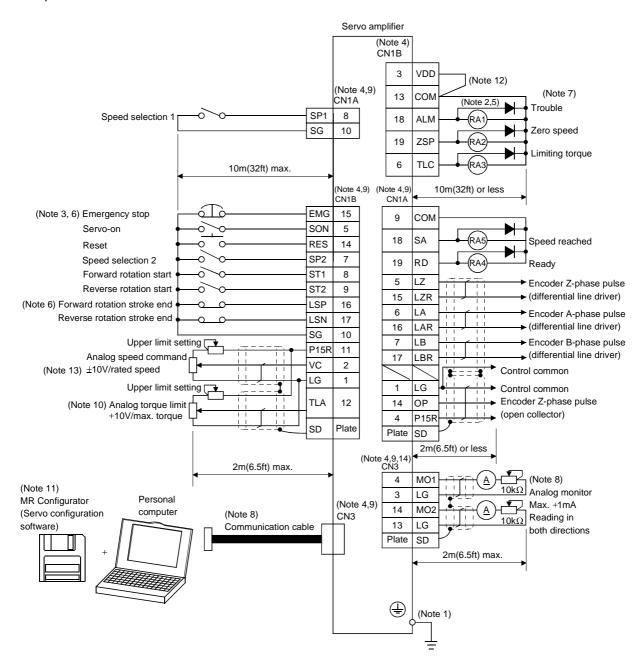
POINT

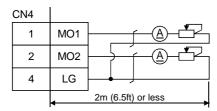

• Refer to Section 3.7.1 for the connection of the power supply system and to Section 3.8 for connection with the servo motor.

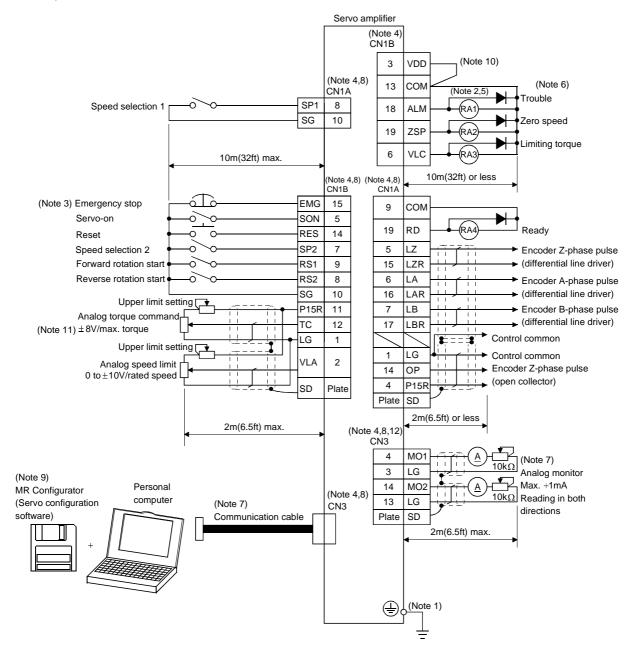
3.1.1 Position control mode

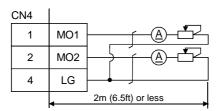

(1) FX-10GM


- Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal (terminal marked (a)) of the servo amplifier to the protective earth (PE) of the control box.
 - 2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will be faulty and will not output signals, disabling the emergency stop (EMG) and other protective circuits.
 - 3. The emergency stop switch (normally closed contact) must be installed.
 - 4. CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of the connectors will lead to a fault.
 - 5. The sum of currents that flow in the external relays should be 80mA max. If it exceeds 80mA, externally supply 24VDC±10%, 200mA power for the interface. 200mA is a value applicable when all I/O signals are used. Reducing the number of I/O points decreases the current capacity. Refer to the current necessary for the interface described in Section 3.6.2. Connect the external 24VDC power supply if the output signals are not used.
 - 6. When starting operation, always turn on emergency stop (EMG) and Forward/Reverse rotation stroke end (LSP/LSN). (Normally closed contacts)
 - 7. Trouble (ALM) turns on in normal alarm-free condition. When this signal is switched off (at occurrence of an alarm), the output of the programmable controller should be stopped by the sequence program.
 - 8. When connecting the personal computer together with analog monitor 1 (MO1) and analog monitor 2 (MO2) on the 7kW or less servo amplifier, use the maintenance junction card (MR-J2CN3TM). (Refer to Section 13.1.5.).
 - 9. The pins with the same signal name are connected in the servo amplifier.
 - 10. This length applies to the command pulse train input in the opencollector system. It is 10m (32ft) or less in the differential line driver system.
 - 11. Use MRZJW3-SETUP 151E.
 - 12. When using the internal power supply (VDD), always connect VDD-COM. Do not connect them when supplying external power. Refer to Section 3.6.2.
 - 13. Connect to CN1A-10 when using the junction terminal block (MR-TB20).
 - 14. For the 11kW or more servo amplifier, analog monitor 1 (MO1) and analog monitor 2 (MO2) are replaced by CN4.

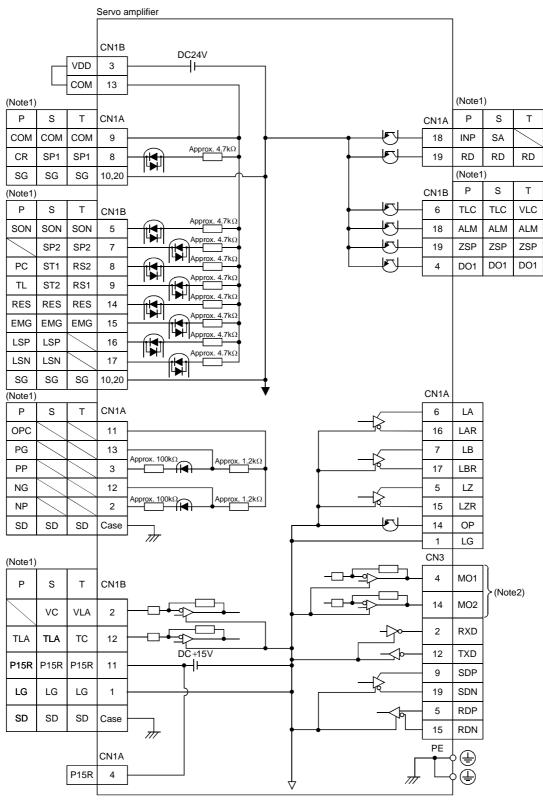

(2) AD75P□(A1SD75P□)


- Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal (terminal marked (a)) of the servo amplifier to the protective earth (PE) of the control box.
 - 2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will be faulty and will not output signals, disabling the emergency stop (EMG) and other protective circuits.
 - 3. The emergency stop switch (normally closed contact) must be installed.
 - 4. CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of the connectors will lead to a fault.
 - 5. The sum of currents that flow in the external relays should be 80mA max. If it exceeds 80mA, externally supply 24VDC±10%, 200mA power for the interface. 200mA is a value applicable when all I/O signals are used. Reducing the number of I/O points decreases the current capacity. Refer to the current necessary for the interface described in Section 3.6.2. Connect the external 24VDC power supply if the output signals are not used.
 - 6. When starting operation, always turn on emergency stop (EMG) and forward/reverse rotation stroke end (LSP/LSN). (Normally closed contacts)
 - 7. Trouble (ALM) turns on in normal alarm-free condition. When this signal is switched off (at occurrence of an alarm), the output of the controller should be stopped by the sequence program.
 - 8. When connecting the personal computer together with analog monitor 1 (MO1) and analog monitor 2 (MO2) on the 7kW or less servo amplifier, use the maintenance junction card (MR-J2CN3TM). (Refer to Section 13.1.5)
 - 9. The pins with the same signal name are connected in the servo amplifier.
 - 10. This length applies to the command pulse train input in the differential line driver system. It is 2m (6.5ft) or less in the opencollector system.
 - 11. Use MRZJW3-SETUP 151E.
 - 12. When using the internal power supply (VDD), always connect VDD-COM. Do not connect them when supplying external power. Refer to Section 3.6.2.
 - 13. This connection is not required for the AD75P. Depending on the used positioning module, however, it is recommended to connect the LG and control common terminals of the servo amplifier to enhance noise immunity.
 - 14. For the 11kW or more servo amplifier, Analog monitor 1 (MO1) and Analog monitor 2 (MO2) are replaced by CN4.


3.1.2 Speed control mode


- Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal (terminal marked (a)) of the servo amplifier to the protective earth (PE) of the control box.
 - 2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will be faulty and will not output signals, disabling the emergency stop (EMG) and other protective circuits.
 - 3. The emergency stop switch (normally closed contact) must be installed.
 - 4. CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of the connectors will lead to a fault.
 - 5. The sum of currents that flow in the external relays should be 80mA max. If it exceeds 80mA, externally supply 24VDC 10%, 200mA power for the interface. 200mA is a value applicable when all I/O signals are used. Reducing the number of I/O points decreases the current capacity. Refer to the current necessary for the interface described in Section 3.6.2. Connect the external 24VDC power supply if the output signals are not used.
 - 6. When starting operation, always turn on emergency stop (EMG) and forward/reverse rotation stroke end (LSP/LSN). (Normally closed contacts)
 - 7. Trouble (ALM) turns on in normal alarm-free condition.
 - 8. When connecting the personal computer together with Analog monitor 1 (MO1) and analog monitor 2 (MO2) on the 7kW or less servo amplifier, use the maintenance junction card (MR-J2CN3TM). (Refer to Section 13.1.5)
 - 9. The pins with the same signal name are connected in the servo amplifier.
 - 10. By setting parameters No.43 to 48 to make TL available, TLA can be used.
 - 11. Use MRZJW3-SETUP 151E.
 - 12. When using the internal power supply (VDD), always connect VDD-COM. Do not connect them when supplying external power. Refer to Section 3.6.2.
 - 13. Use an external power supply when inputting a negative voltage.
 - 14. For the 11kW or more servo amplifier, analog monitor 1 (MO1) and analog monitor 2 (MO2) are replaced by CN4.

3.1.3 Torque control mode

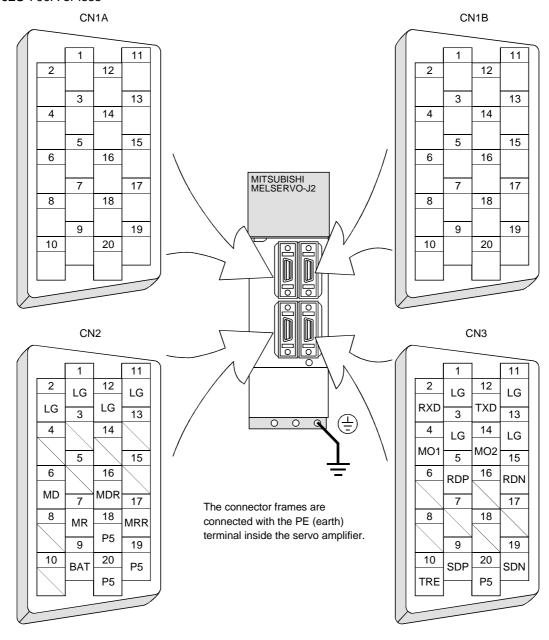


- Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal of the (terminal marked (a)) servo amplifier to the protective earth (PE) of the control box.
 - 2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will be faulty and will not output signals, disabling the emergency stop (EMG) and other protective circuits.
 - 3. The emergency stop switch(normally closed contact) must be installed.
 - 4. CN1B, CN2 and CN3 have the same shape. Wrong connection of the connectors will lead to a fault.
 - 5. The sum of currents that flow in the external relays should be 80mA max. If it exceeds 80mA, externally supply 24VDC 10%, 200mA power for the interface. 200mA is a value applicable when all I/O signals are used. Reducing the number of I/O points decreases the current capacity. Refer to the current necessary for the interface described in Section 3.6.2. Connect the external 24VDC power supply if the output signals are not used.
 - 6. Trouble (ALM) turns on in normal alarm-free condition.
 - 7. When connecting the personal computer together with analog monitor 1 (MO1) and analog monitor 2 (MO2) on the 7kW or less servo amplifier, use the maintenance junction card (MR-J2CN3TM). (Refer to Section 13.1.5)
 - 8. The pins with the same signal name are connected in the servo amplifier.
 - 9. Use MRZJW3-SETUP 121E.
 - 10. When using the internal power supply (VDD), always connect VDD-COM. Do not connect them when supplying external power. Refer to Section 3.6.2.
 - 11. Use an external power supply when inputting a negative voltage.
 - 12. For the 11kW or more servo amplifier, analog monitor 1 (MO1) and analog monitor 2 (MO2) are replaced by CN4.

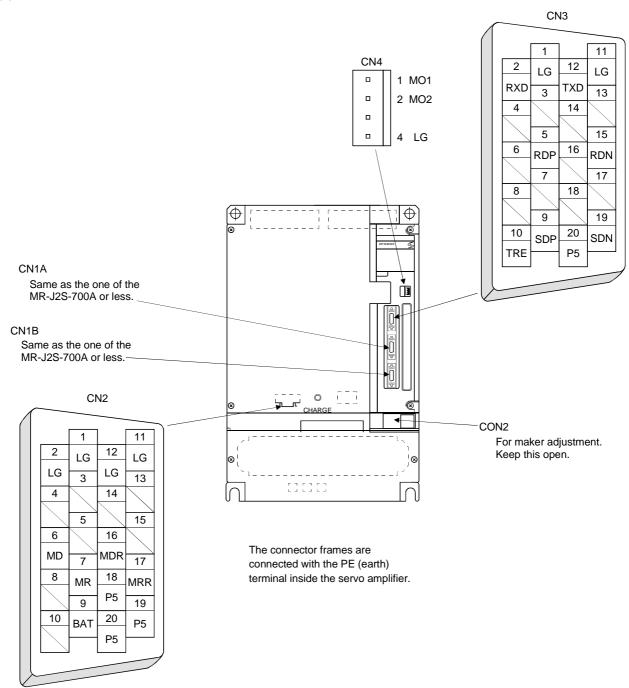
3.2 Internal connection diagram of servo amplifier

The following is the internal connection diagram where the signal assignment has been made in the initial status in each control mode.

Note1. P: Position control mode, S: Speed control mode, T: Torque control mode 2. For the 11kW or more servo amplifier, MO1 is replaced by CN4-1 and MO2 by CN4-2.


3.3 I/O signals

3.3.1 Connectors and signal arrangements


POINT

- The pin configurations of the connectors are as viewed from the cable connector wiring section.
- Refer to the next page for CN1A and CN1B signal assignment.

(1) MR-J2S-700A or less

(2) MR-J2S-11KA or more

(3) CN1A and CN1B signal assignment

The signal assignment of connector changes with the control mode as indicated below; For the pins which are given parameter No.s in the related parameter column, their signals can be changed using those parameters.

0	D'a Na	(Note1)I/O		(Not	^{e2)} I/O Signals	in control mod	es		Related
Connector	Pin No.	(······/I/O	Р	P/S	S	S/T	Т	T/P	parameter
	1		LG	LG	LG	LG	LG	LG	
	2	I	NP	NP/—				_/NP	
	3	I	PP	PP/—				—/PP	
	4	/	P15R	P15R/P15R	P15R	P15R	P15R	P15R	
	5	0	LZ	LZ	LZ	LZ	LZ	LZ	
	6	0	LA	LA	LA	LA	LA	LA	
	7	0	LB	LB	LB	LB	LB	LB	
	8	I	CR	CR/SP1	SP1	SP1/SP1	SP1	SP1/CR	No.43 to 48
	9		COM	COM	COM	COM	COM	COM	
CNIA	10		SG	SG	SG	SG	SG	SG	
CN1A	11		OPC	OPC/—				-/OPC	
	12	I	NG	NG/—				-/NG	
	13	I	PG	PG/—				-/PG	
	14	0	OP	OP	OP	OP	OP	OP	
	15	0	LZR	LZR	LZR	LZR	LZR	LZR	
	16	0	LAR	LAR	LAR	LAR	LAR	LAR	
•	17	0	LBR	LBR	LBR	LBR	LBR	LBR	
•	18	0	INP	INP/SA	SA	SA/—		-/INP	No.49
•	19	0	RD	RD	RD	RD	RD	RD	No.49
	20		SG	SG	SG	SG	SG	SG	
	1		LG	LG	LG	LG	LG	LG	
	2	I		-/VC	VC	VC/VLA	VLA	VLA/—	
	3		VDD	VDD	VDD	VDD	VDD	VDD	
	(Note 4)4	0	DO1	DO1	DO1	DO1	DO1	DO1	
	5	I	SON	SON	SON	SON	SON	SON	No.43 to 48
	6	0	TLC	TLC	TLC	TLC/VLC	VLC	VLC/TLC	No.49
	7	I		LOP	SP2	LOP	SP2	LOP	No.43 to 48
	8	I	PC	PC/ST1	ST1	ST1/RS2	RS2	RS2/PC	No.43 to 48
	9	I	TL	TL/ST2	ST2	ST2/RS1	RS1	RS1/TL	No.43 to 48
	10		SG	SG	SG	SG	SG	SG	
CN1B	11		P15R	P15R	P15R	P15R	P15R	P15R	
	10	т	TTI A	(Note3)	(Note) TT A	(Note3)	TC	TC/TIA	
	12	I	TLA	TLA/TLA	(Note3) TLA	TLA/TC	TC	TC/TLA	
	13	/	COM	COM	COM	COM	COM	COM	
	14	I	RES	RES	RES	RES	RES	RES	No.43 to 48
	15	I	EMG	EMG	EMG	EMG	EMG	EMG	
	16	I	LSP	LSP	LSP	LSP/—		-/LSP	
	17	I	LSN	LSN	LSN	LSN/-		-/LSN	
	18	О	ALM	ALM	ALM	ALM	ALM	ALM	No.49
	19	О	ZSP	ZSP	ZSP	ZSP	ZSP	ZSP	No.1, 49
	20		SG	SG	SG	SG	SG	SG	

Note 1. I : Input signal, O: Output signal

^{2.} P: Position control mode, S: Speed control mode, T: Torque control mode, P/S: Position/speed control change mode, S/T: Speed/torque control change mode, T/P: Torque/position control change mode

^{3.} By setting parameters No. 43 to 48 to make TL available, TLA can be used.

^{4.} CN1B-4 and CN1A-18 output signals are the same. However, this pin may not be used when assigning alarm codes to CN1A-18.

(4) Symbols and signal names

Symbol	Signal name	Symbol	Signal name
SON	Servo-on	VLC	Limiting speed
LSP	Forward rotation stroke end	RD	Ready
LSN	Reverse rotation stroke end	ZSP	Zero speed
CR	Clear	INP	In position
SP1	Speed selection 1	SA	Speed reached
SP2	Speed selection 2	ALM	Trouble
PC	Proportion control	WNG	Warning
ST1	Forward rotation start	BWNG	Battery warning
ST2	Reverse rotation start	OP	Encoder Z-phase pulse (open collector)
TL	Torque limit selection	MBR	Electromagnetic brake interlock
RES	Reset	LZ	Encoder Z-phase pulse
EMG	Emergency stop	LZR	(differential line driver)
LOP	Control change	LA	Encoder A-phase pulse
VC	Analog speed command	LAR	(differential line driver)
VLA	Analog speed limit	LB	Encoder B-phase pulse
TLA	Analog torque limit	LBR	(differential line driver)
TC	Analog torque command	VDD	I/F internal power supply
RS1	Forward rotation selection	COM	Digital I/F power supply input
RS2	Reverse rotation selection	OPC	Open collector power input
PP		SG	Digital I/F common
NP	F	P15R	15VDC power supply
PG	Forward/reverse rotation pulse train	LG	Control common
NG		SD	Shield
TLC	Limiting torque		

3.3.2 Signal explanations

For the I/O interfaces (symbols in I/O division column in the table), refer to Section 3.6.2.

In the control mode field of the table

- P: Position control mode, S: Speed control mode, T: Torque control mode
- \bigcirc : Denotes that the signal may be used in the initial setting status.
- \triangle : Denotes that the signal may be used by setting the corresponding parameter among parameters 43 to 49.

The pin No.s in the connector pin No. column are those in the initial status.

(1) Input signals

Signal	Symbol	Connec- tor pin	Functions/Applications	I/O	_	onti mod	
0.9		No.		division	Р	s	Т
Servo-on	SON	CN1B 5	Turn SON on to power on the base circuit and make the serve amplifier ready to operate (servo-on). Turn it off to shut off the base circuit and coast the servo moto (servo off). Set "□□□1" in parameter No. 41 to switch this signal on (keep terminals connected) automatically in the servo amplifier.		0	0	0
Reset	RES	CN1B 14	Turn RES on for more than 50ms to reset the alarm. Some alarms cannot be deactivated by the reset signal. Refer to Section 10.2. Turning RES on in an alarm-free status shuts off the base circuit The base circuit is not shut off when "\(\sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} is set in parameter No. 51.		0	0	0
Forward rotation stroke end	LSP	CN1B 16	To start operation, turn LSP/LSN on. Turn it off to bring the motor to a sudden stop and make it servo-locked. Set "□□□1" in parameter No. 22 to make a slow stop. (Refer to Section 5.2.3.) (Note) Input signals Operation LSP LSN CCW CW direction direction 1 1 0 0 0 1	e DI-1	0	0	
Reverse rotation stroke end	LSN	CN1B 17	1 0 0 0 0 Note. 0: off 1: on Set parameter No. 41 as indicated below to switch on the signa (keep terminals connected) automatically in the servo amplifier: Parameter No.41 Automatic ON □□1□ LSP □1□□ LSN	s			

		Connec-		Functions / Analisations							
Signal	Symbol	tor pin No.		Functions/Applications							
External torque limit selection	TL	CN1B 9	Turn TL off valid, or tur For details,	n it on to	DI-1	0	Δ				
Internal torque limit selection	TL1		parameter N	No. 43 to 4	al, make it usable by making the setting of 8.), Section 3.4.1.	DI-1	Δ	Δ	Δ		
Forward rotation	ST1	CN1B	Used to star	t the serv	o motor in any of the following directions:	DI-1		0			
start		8		out signals ST1	Servo motor starting direction						
			0	0	Stop (servo lock)		11		$ \rangle $		
Reverse rotation	ST2	CN1B	0	1	CCW		П		$ \rangle $		
start		9	1	0	CW		\mathbb{N}		$ \ $		
			1	1	Stop (servo lock)				$ \ $		
			Note. 0: off	•			\sqcup		$ \ $		
			1: on						$ \ $		
			If both ST1	and ST2	are switched on or off during operation, the		1				
					decelerated to a stop according to the ing and servo-locked.						
Forward rotation	RS1	CN1B	Used to sele	ect any of	the following servo motor torque generation	DI-1			0		
selection		9	directions:				1	1			
			(Note) Inp	ut signals	Towns consist disential			1			
			RS2	RS1	Torque generation direction			$ \rangle$			
			0	0	Torque is not generated.		Ш	$ \rangle$			
Reverse rotation selection	RS2	CN1B 8	0	1	Forward rotation in driving mode / reverse rotation in regenerative mode						
			1	0	Reverse rotation in driving mode / forward rotation in regenerative mode						
			1	1	Torque is not generated.						
			Note. 0: off	:							
			1: on	1							

Signal	Symbol	Connector pin		I/O division	I	ontr	e				
Speed selection 1	SP1	No. CN1A 8		he cor SP3,	make	d spee	d for operation. sable by making the setting of	DI-1	P	0	0
Speed selection 2	SP2	CN1B 7	Setting of parameter	(N	ote) In signal:	3	Speed command	DI-1	/	0	0
Speed selection 3	SP3		No. 43 to 48	SP3	SP2	SP1	Analog speed command (VC)	DI-1	\vdash		
			When speed selection		0	1	Internal speed command 1 (parameter No. 8)				_
			(SP3) is not used		1	0	Internal speed command 2 (parameter No. 9)				
			(initial status)		1	1	Internal speed command 3 (parameter No. 10)				
				0	0	0	Analog speed command (VC)				
			-	0	0	1	Internal speed command 1 (parameter No. 8)				
				0	1	0	Internal speed command 2 (parameter No. 9)				
			When speed selection	0	1	1	Internal speed command 3 (parameter No.10)				
			(SP3) is made valid	1	0	0	Internal speed command 4 (parameter No. 72)				
			Valid	1	0	1	Internal speed command 5 (parameter No. 73)				
				1	1	0	Internal speed command 6 (parameter No. 74)				
				1	1	1	Internal speed command 7 (parameter No. 75)				
			<torque :<br="" control="">Used to select t When using S parameter No. Setting of parameter</torque>	43 to 4	make 48. ote) In signal:	put	sable by making the setting of				
			No. 43 to 48	SP3		SP1	Ороса шти				
			VV/1		0	0	Analog speed limit (VLA)				
			When speed selection (SP3) is not		0	1	Internal speed command 1 (parameter No. 8)				
			used (initial status)		1	0	Internal speed command 2 (parameter No. 9)				
					1	1	Internal speed command 3 (parameter No. 10)				
				0	0	0	Analog speed limit (VLA) Internal speed command 1				
				0	0	1	(parameter No. 8) Internal speed command 2				
				0	1	0	(parameter No. 9) Internal speed command 3				
			When speed selection	0	1	1	(parameter No.10) Internal speed command 4				
			(SP3) is made valid	1	0	0	(parameter No. 72) Internal speed command 5				
				1	0	0	(parameter No. 73) Internal speed command 6				
			\ ⊢	1	1	1	(parameter No. 74) Internal speed command 7				
			Note. 0: off 1: on	1	1	1	(parameter No. 75)				

		Connec-				I/O	С	ontr	ol
Signal	Symbol	tor pin No.		Fund	tions/Applications	division	P	nod S	e T
Proportion control	PC	CN1B 8	proportional in If the servo mo external factor shift. When the after positionin control (PC) unnecessary to When the shar proportion confi	Connect PC-SG to switch the speed amplifier from the proportional integral type to the proportional type. If the servo motor at a stop is rotated even one pulse due to any external factor, it generates torque to compensate for a position hift. When the servo motor shaft is to be locked mechanically fiter positioning completion (stop), switching on the proportion ontrol (PC) upon positioning completion will suppress the innecessary torque generated to compensate for a position shift. When the shaft is to be locked for a long time, switch on the proportion control (PC) and torque control (TL) at the same time of make the torque less than the rated by the analog torque limit.					
Emergency stop	EMG	CN1B 15	Turn EMG off emergency stop dynamic brake	f (open EMo state, in w is operated. (short EMG	G-common) to bring the motor to an hich the base circuit is shut off and the	DI-1	0	0	0
Clear	CR	CN1A 8	its leading edge	Furn CR on to clear the position control counter droop pulses on ts leading edge. The pulse width should be 10ms or more. When the parameter No. 42 setting is "□□1□", the pulses are					
Electronic gear selection 1	CM1		parameters No The combination different electron	. 43 to 48. on of CM1 ar onic gear nu	nd CM2 gives you a choice of four merators set in the parameters. sed in the absolute position detection	DI-1	Δ		
Electronic gear selection 2	CM2		(Note) Input signals Electronic gear molecule						
Gain changing	CDP		When using the parameter No. Turn CDP on to parameter No.	When using this signal, make it usable by the setting of parameter No. 43 to 48. Furn CDP on to change the load inertia moment ratio into the parameter No. 61 setting and the gain values into the values multiplied by the parameter No. 62 to 64 settings.					

Signal	Symbol	Connector pin	Functions/Applications	I/O division		ontr node S	
Control change	LOP	CN1B 7	<position change="" control="" mode="" speed=""> Used to select the control mode in the position/speed control change mode.</position>	DI-1	R Fur	efer actio Appli	to ns/ -
			(Note) LOP Control mode 0 Position 1 Speed Note. 0: off 1: on <speed change="" control="" mode="" torque=""> Used to select the control mode in the speed/torque control change mode.</speed>				5.
			(Note) LOP Control mode 0 Speed 1 Torque Note. 0: off 1: on <torque control="" mode="" position=""> Used to select the control mode in the torque/position control change mode.</torque>				
			(Note) LOP Control mode 0 Torque 1 Position Note. 0: off 1: on				
Analog torque limit	TLA	CN1B 12	To use this signal in the speed control mode, set any of parameters No. 43 to 48 to make TL available. When the analog torque limit (TLA) is valid, torque is limited in the full servo motor output torque range. Apply 0 to +10VDC across TLA-LG. Connect the positive terminal of the power supply to TLA. Maximum torque is generated at +10V. (Refer to (5) in Section 3.4.1.) Resolution:10bit	Analog input	0	Δ	\
Analog torque command	TC		Used to control torque in the full servo motor output torque range. Apply 0 to ±8VDC across TC-LG. Maximum torque is generated at ±8V. (Refer to (1) in Section 3.4.3.) The torque at ±8V input can be changed using parameter No. 26.	Analog input			0
Analog speed command	VC	CN1B 2	Apply 0 to ±10VDC across VC-LG. Speed set in parameter No. 25 is provided at ±10V. (Refer to (1) in Section 3.4.2.) Resolution:14bit or equivalent	Analog input		0	
Analog speed limit	VLA		Apply 0 to +10VDC across VLA-LG. Speed set in parameter No. 25 is provided at +10V (Refer to (3) in Section 3.4.3.).	Analog input			0
Forward rotation pulse train Reverse rotation pulse train	PP NP	CN1A 3 CN1A 2	Used to enter a command pulse train. • In the open collector system (max. input frequency 200kpps): Forward rotation pulse train across PP-SG Reverse rotation pulse train across NP-SG	DI-2	0		
	PG NG	CN1A 13 CN1A 12	In the differential receiver system (max. input frequency 500kpps): Forward rotation pulse train across PG-PP Reverse rotation pulse train across NG-NP The command pulse train form can be changed using parameter No. 21.				

(2) Output signals

O: 1	Signal Symbol tor pin Functions/Applications						ol e
Signal	Symbol	tor pin No.	Functions/Applications	division	P	S	Т
Trouble	ALM	CN1B 18	ALM turns off when power is switched off or the protective circuit is activated to shut off the base circuit. Without alarm occurring, ALM turns on within about 1s after power-on.	DO-1	0	0	0
Dynamic brake interlock	DB		This signal can be used with the $11kW$ or more servo amplifier. When using this signal, set " $\Box 1 \Box \Box$ " in parameter No. 1. When the dynamic brake is operated, DB turns off. (Refer to Section 13.1.4.)	DO-1	0	0	0
Ready	RD	CN1A 19	RD turns on when the servo is switched on and the servo amplifier is ready to operate.	DO-1	0	0	0
In position	INP	CN1A 18	INP turns on when the number of droop pulses is in the preset in- position range. The in-position range can be changed using parameter No. 5. When the in-position range is increased, INP-SG may be kept connected during low-speed rotation.	DO-1	0		
Speed reached	SA		SA turns off when servo on (SON) turns off or the servomotor speed has not reached the preset speed with both forward rotation start (ST1) and reverse rotation start (ST2) turned off. SA turns on when the servomotor speed has nearly reached the preset speed. When the preset speed is 20r/min or less, SA always turns on.	DO-1		0	
Limiting speed	VLC	CN1B 6	VLC turns on when speed reaches the value limited using any of the internal speed limits 1 to 7 (parameter No. 8 to 10, 72 to 75) or the analog speed limit (VLA) in the torque control mode. VLC turns off when servo on (SON) turns off.	DO-1			0
Limiting torque	TLC		TLC turns on when the torque generated reaches the value set to the internal torque limit 1 (parameter No. 28) or analog torque limit (TLA).	DO-1	0	0	
Zero speed	ZSP	CN1B 19	ZSP turns on when the servo motor speed is zero speed (50r/min) or less. Zero speed can be changed using parameter No. 24.	DO-1	0	0	0
Electromagnetic brake interlock	MBR	CN1B 19	Set "□□1□" in parameter No. 1 to use this parameter. Note that ZSP will be unusable. MBR turns off when the servo is switched off or an alarm occurs.	DO-1	Δ	Δ	Δ
Warning	WNG		To use this signal, assign the connector pin for output using parameter No.49. The old signal before assignment will be unusable. When warning has occurred, WNG turns on. When there is no warning, WNG turns off within about 1s after power-on.	DO-1	Δ	Δ	Δ
Battery warning	BWNG		To use this signal, assign the connector pin for output using parameter No.49. The old signal before assignment will be unusable. BWNG turns on when battery cable breakage warning (AL. 92) or battery warning (AL. 9F) has occurred. When there is no battery warning, BWNG turns off within about 1s after power-on.	DO-1	Δ	Δ	Δ

		Connec-						I/O		onti	
Signal	Symbol	tor pin			olications	division		nod	Ť		
		No.					G. 7. 10. 10. 1	Р	S	Т	
Alarm code	ACD 0	CN1A	To use th	is signal	, set "□[□□1 " in p	arameter No.49.	DO-1	Δ	Δ	Δ
		19	This sign	al is ou	tput wh	en an ala	arm occurs. When there is no				
	ACD 1	CN1A	alarm, re	spective	ordinary	y signals (RD, INP, SA, ZSP) are output.				
		18	Alarm co	des and a	alarm na	ames are l	isted below:				
	ACD 2	CN1B	(Not	(Note) Alarm code							
		19	CN1B	CN1A	CN1A	display	Name				
			19 Pin	18 Pin	19 Pin	uispiay					
						88888	Watchdog				
						AL.12	Memory error 1				
						AL.13	Clock error				
						AL.15	Memory error 2				
			0	0	0	AL.17	Board error				
			U	0	0	AL.19	Memory error 3				
						AL.37	Parameter error				
						AL.8A	Serial communication timeout				
						AL.8E	Serial communication error				
						AL.30	Regenerative error				
			0	0	1	AL.33	Overvoltage				
			0	1	0	AL.10	Undervoltage				
						AL.45	Main circuit device				
				_		AL.46	Servo motor overheat				
			0	1	1	AL.50	Overload 1				
						AL.51	Overload 2				
						AL.24	Main circuit error				
			1	0	0	AL.32	Overcurrent				
						AL.31	Overspeed				
			1	0	1	AL.35	Command pulse frequency alarm				
						AL.52	Error excessive				
						AL.16	Encoder error 1				
						AL.1A	Monitor combination error				
			1 1 0 A		AL.20	Encoder error 2					
						AL.25	Absolute position erase				
			Note. 0:	off	I.		P				
				on							

O'ava al	0	Connecto	or pin No.	Evertises (Applications	I/O	_	ontr	-
Signal	Symbol	7kW or less	11kW or more	Functions/Applications	division	Р	s	Т
Encoder Z-phase pulse (Open collector)	OP	CN1A 14	CN1A 14	Outputs the zero-point signal of the encoder. One pulse is output per servo motor revolution. OP turns on when the zero-point position is reached. (Negative logic) The minimum pulse width is about $400\mu s$. For home position return using this pulse, set the creep speed to $100r/min$, or less.	DO-2	0	0	0
Encoder A-phase pulse (Differential line driver) Encoder B-phase pulse (Differential line	LA LAR LB LBR	CN1A 6 CN1A 16 CN1A 7 CN1A	CN1A 6 CN1A 16 CN1A 7 CN1A	Outputs pulses per servo motor revolution set in parameter No. 27 in the differential line driver system. In CCW rotation of the servo motor, the encoder B-phase pulse lags the encoder A-phase pulse by a phase angle of $\pi/2$. The relationships between rotation direction and phase difference of the A- and B-phase pulses can be changed	DO-2	0	0	0
driver) Encoder Z-phase pulse (Differential line driver)	LZ LZR	17 CN1A 5 CN1A 15	17 CN1A 5 CN1A 15	using parameter No. 54. The same signal as OP is output in the differential line driver system.	DO-2	0	0	0
Analog monitor 1 Analog monitor 2	MO1 MO2	CN3 4 CN3 14	CN4 1 CN4 2	Used to output the data set in parameter No.17 to across MO1-LG in terms of voltage. Resolution 10 bits Used to output the data set in parameter No.17 to across MO2-LG in terms of voltage. Resolution 10 bits	Analog output Analog output	0	0	0

(3) Communication

POINT

• Refer to Chapter 14 for the communication function.

Signal		Connec- tor pin	Functions/Applications		Control mode		
		No.			Р	S	Т
RS-422 I/F	SDP	CN3	RS-422 and RS-232C functions cannot be used together.	\	0	0	0
		9	Choose either one in parameter No. 16.	\			
	SDN	CN3					
		19		\			
	RDP	CN3		\			
		5		\			
	RDN	CN3		\			
		15		\			
RS-422	TRE	CN3	Termination resistor connection terminal of RS-422 interface.			0	0
termination		10	When the servo amplifier is the termination axis, connect this				
			terminal to RDN (CN3-15).				
RS-232C I/F	RXD	CN3	RS-422 and RS-232C functions cannot be used together.			0	0
		2	Choose either one in parameter No. 16.				
	TXD	CN3					
		12					

(4) Power supply

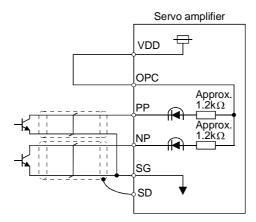
	Symbol	Connector pin No.				Control mode		
Signal		7kW or less	11kW or more	Functions/Applications	I/O division	Р	S	Т
I/F internal	VDD	CN1B	CN1B	Used to output +24V±10% to across VDD-SG.		0	0	0
power supply	VDD	3	3	When using this power supply for digital interface, connect it with COM.)	
	Permissible current : 80mA					1		
Digital I/F power	COM	CN1A	CN1A	Used to input 24VDC for input interface.		0	0	0
supply input		9	9	Connect the positive terminal of the 24VDC external				1
		CN1B	CN1B	power supply.				l
		13	13	24VDC±10%				
Open collector	OPC	CN1A	CN1A	When inputting a pulse train in the open collector			0	0
power input		11	11	system, supply this terminal with the positive (+) power of $24 \mathrm{VDC}$.				
Digital I/F	SG	CN1A	CN1A	Common terminal for input signals such as SON and		0	0	0
common		10	10	EMG. Pins are connected internally.				
20		20	Separated from LG.					
		CN1B	CN1B					
		10	10					
		20	20					
15VDC power	P15R	CN1A	CN1A	Outputs 15VDC to across P15R-LG. Available as power			0	0
supply		4	4	for TC, TLA, VC, VLA.				
CN1B CN1B Permissible of		Permissible current: 30mA						
		11	11					
Control common	LG	CN1A	CN1A	$Common\ terminal\ for\ TLA,\ TC,\ VC,\ VLA,\ FPA,\ FPB,\ OP$	<u> </u>		0	0
		1	1	,MO1, MO2 and P15R.				
		CN1B	CN1B	Pins are connected internally.				
		1	1					
		CN3	CN3					
		1, 11	1, 11		\			
		3, 13	3, 13		\			l
			CN4		\			
			4		\	L_		Ļ
Shield	SD	Plate	Plate	Connect the external conductor of the shield cable.			0	0

3.4 Detailed description of the signals

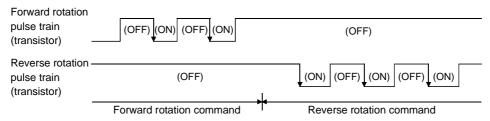
3.4.1 Position control mode

(1) Pulse train input

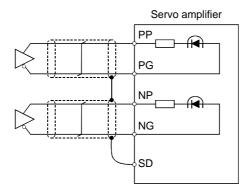
(a) Input pulse waveform selection


Command pulses may be input in any of three different forms, for which positive or negative logic can be chosen. Set the command pulse train form in parameter No. 21.

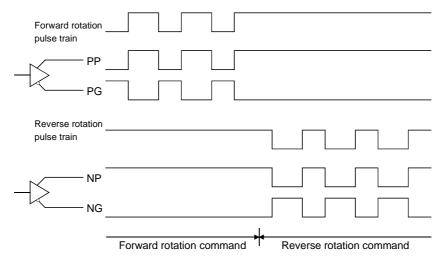
Arrow
☐ or ☐ in the table indicates the timing of importing a pulse train.


A- and B-phase pulse trains are imported after they have been multiplied by 4.

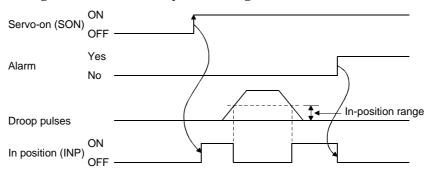
Pulse train form		Forward rotation command	Reverse rotation command	Parameter No. 21 (Command pulse train)
	Forward rotation pulse train Reverse rotation pulse train	PP TTTT		0010
Negative logic	Pulse train + sign	NP		0011
	A-phase pulse train B-phase pulse train	PP		0012
	Forward rotation pulse train Reverse rotation pulse train	PP STIFF		0000
Positive logic	Pulse train + sign	PP TITIT		0001
	A-phase pulse train B-phase pulse train	NP NP		0002


- (b) Connections and waveforms
 - 1) Open collector system Connect as shown below:

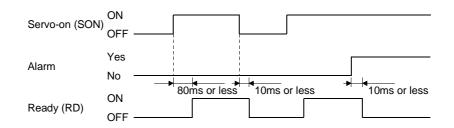
The explanation assumes that the input waveform has been set to the negative logic and forward and reverse rotation pulse trains (parameter No.21 has been set to 0010). The waveforms in the table in (a), (1) of this section are voltage waveforms of PP and NP based on SG. Their relationships with transistor ON/OFF are as follows:



2) Differential line driver system Connect as shown below:


The explanation assumes that the input waveform has been set to the negative logic and forward and reverse rotation pulse trains (parameter No.21 has been set to 0010).

For the differential line driver, the waveforms in the table in (a), (1) of this section are as follows. The waveforms of PP, PG, NP and NG are based on that of the ground of the differential line driver.



(2) In-position (INP)

PF-SG are connected when the number of droop pulses in the deviation counter falls within the preset in-position range (parameter No. 5). INP-SG may remain connected when low-speed operation is performed with a large value set as the in-position range.

(3) Ready (RD)

(4) Electronic gear switching

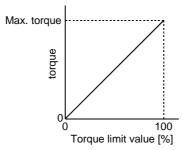
The combination of CM1 and CM2 gives you a choice of four different electronic gear numerators set in the parameters.

As soon as CM1/CM2 is turned ON or OFF, the molecule of the electronic gear changes. Therefore, if any shock occurs at this change, use position smoothing (parameter No. 7) to relieve shock.

(Note) Extern	al input signal	Electronic gear molecule
CM2	CM1	
0	0	Parameter No. 3
0	1	Parameter No. 69
1	0	Parameter No. 70
1	1	Parameter No. 71

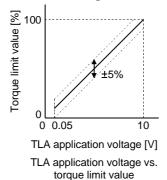
Note. 0: off

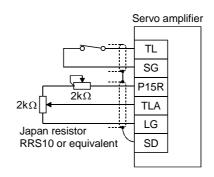
^{1:} on


(5) Torque limit

CAUTION

• If the torque limit is canceled during servo lock, the servomotor may suddenly rotate according to position deviation in respect to the command position.


(a) Torque limit and torque


By setting parameter No. 28 (internal torque limit 1), torque is always limited to the maximum value during operation. A relationship between the limit value and servo motor torque is shown below.

A relationship between the applied voltage of the analog torque limit (TLA) and the torque limit value of the servo motor is shown below. Torque limit values will vary about 5% relative to the voltage depending on products.

At the voltage of less than 0.05V, torque may vary as it may not be limited sufficiently. Therefore, use this function at the voltage of 0.05V or more.

(b) Torque limit value selection

Choose the torque limit made valid by the internal torque limit value 1 (parameter No. 28) using the external torque limit selection (TL) or the torque limit made valid by the analog torque limit (TLA) as indicated below.

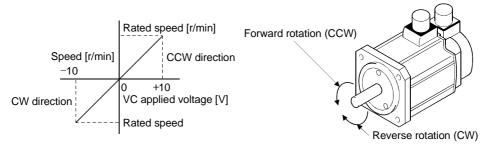
When internal torque limit selection (TL1) is made usable by parameter No. 43 to 48, internal torque limit 2 (parameter No. 76) can be selected. However, if the parameter No. 28 value is less than the limit value selected by TL/TL1, the parameter No. 28 value is made valid.

(Note) Externa	al input signals	Tarqua limit valua mada valid
TL1	TL	Torque limit value made valid
0	0	Internal torque limit value 1 (parameter No. 28)
0	1	TLA > Parameter No. 28: Parameter No. 28 TLA < Parameter No. 28: TLA
1	0	Parameter No. 76 > Parameter No. 28: Parameter No. 28 Parameter No. 76 < Parameter No. 28: Parameter No. 76
1	1	TLA > Parameter No. 76: Parameter No. 76 TLA < Parameter No. 76: TLA

Note. 0: off 1: on

(c) Limiting torque (TLC)

TLC turns on when the servo motor torque reaches the torque limited using the internal torque limit $1 \cdot 2$ or analog torque limit.

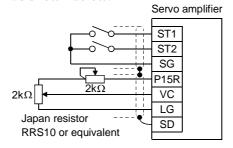

3.4.2 Speed control mode

(1) Speed setting

(a) Speed command and speed

The servo motor is run at the speeds set in the parameters or at the speed set in the applied voltage of the analog speed command (VC). A relationship between the analog speed command (VC) applied voltage and the servo motor speed is shown below:

The maximum speed is achieved at ± 10 V. The speed at ± 10 V can be changed using parameter No. 25.



The following table indicates the rotation direction according to forward rotation start (ST1) and reverse rotation start (ST2) combination:

(Note 1) Extern	nal input signals	(Note 2) Rotation direction				
CTO	OT4	Ar	Internal speed			
ST2	ST1	+ Polarity	0V	-Polarity	commands	
0	0	Stop	Stop	Stop	Stop	
U	0 0	(Servo lock)	(Servo lock)	(Servo lock)	(Servo lock)	
0	1	CCW	Stop	CW	CCW	
1	0	CW	(No servo lock)	CCW	CW	
1 1	1	Stop	Stop	Stop	Stop	
1	1	(Servo lock)	(Servo lock)	(Servo lock)	(Servo lock)	

Note 1. 0: off 1: on

The forward rotation start (ST1) and reverse rotation start (ST2) can be assigned to any pins of the connector CN1A, CN1B using parameters No. 43 to 48. Generally, make connection as shown below:

^{2.} If the torque limit is canceled during servo lock, the servomotor may suddenly rotate according to position deviation in respect to the command position.

(b) Speed selection 1 (SP1), speed selection 2 (SP2) and speed command value

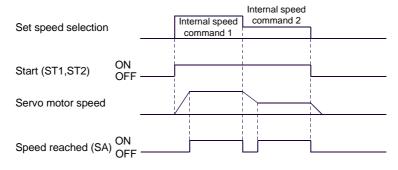
Choose any of the speed settings made by the internal speed commands 1 to 3 using speed selection
1 (SP1) and speed selection 2 (SP2) or the speed setting made by the analog speed command (VC).

(Note) External input signals		Chand command value
SP2	SP1	Speed command value
0	0	Analog speed command (VC)
0	1	Internal speed command 1 (parameter No. 8)
1	0	Internal speed command 2 (parameter No. 9)
1	1	Internal speed command 3 (parameter No. 10)

Note. 0: off 1: on

By making speed selection 3 (SP3) usable by setting of parameter No. 43 to 48, you can choose the speed command values of analog speed command (VC) and internal speed commands 1 to 7.

(Note) Ex	(Note) External input signals		Consideration of value
SP3	SP2	SP1	Speed command value
0	0	0	Analog speed command (VC)
0	0	1	Internal speed command 1 (parameter No. 8)
0	1	0	Internal speed command 2 (parameter No. 9)
0	1	1	Internal speed command 3 (parameter No. 10)
1	0	0	Internal speed command 4 (parameter No. 72)
1	0	1	Internal speed command 5 (parameter No. 73)
1	1	0	Internal speed command 6 (parameter No. 74)
1	1	1	Internal speed command 7 (parameter No. 75)


Note. 0: off 1: on

The speed may be changed during rotation. In this case, the values set in parameters No. 11 and 12 are used for acceleration/deceleration.

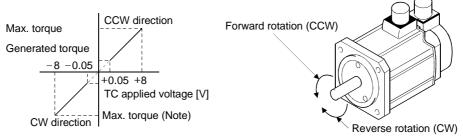
When the speed has been specified under any internal speed command, it does not vary due to the ambient temperature.

(2) Speed reached (SA)

SA turns on when the servo motor speed has nearly reached the speed set to the internal speed command or analog speed command.

(3) Torque limit

As in Section 3.4.1 (5).

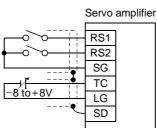

3.4.3 Torque control mode

(1) Torque control

(a) Torque command and torque

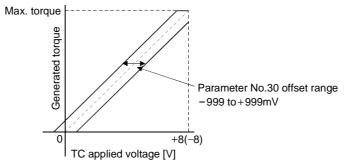
A relationship between the applied voltage of the analog torque command (TC) and the torque by the servo motor is shown below.

The maximum torque is generated at $\pm 8V$. Note that the torque at $\pm 8V$ input can be changed with parameter No. 26.


Generated torque limit values will vary about 5% relative to the voltage depending on products. Also the torque may vary if the voltage is low (-0.05 to +0.05V) and the actual speed is close to the limit value. In such a case, increase the speed limit value.

The following table indicates the torque generation directions determined by the forward rotation selection (RS1) and reverse rotation selection (RS2) when the analog torque command (TC) is used.

(Note) Externa	al input signals	Rotation direction				
RS2	RS1	Torqu	Torque control command (TC)			
R52	KSI	+ Polarity	0V	Polarity		
0	0	Torque is not generated.		Torque is not generated.		
0	1	CCW (reverse rotation in driving mode/forward rotation in regenerative mode)	Torque is not	CW (forward rotation in driving mode/reverse rotation in regenerative mode)		
1	0	CW (forward rotation in driving mode/reverse rotation in regenerative mode)	generated.	CCW (reverse rotation in driving mode/forward rotation in regenerative mode)		
1	1	Torque is not generated.		Torque is not generated.		


Note. 0: off 1: on

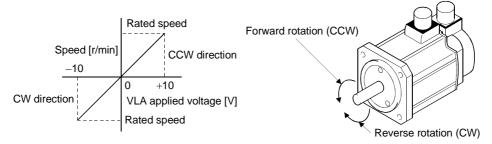
Generally, make connection as shown below:

(b) Analog torque command offset

Using parameter No. 30, the offset voltage of -999 to +999mV can be added to the TC applied voltage as shown below.

(2) Torque limit

By setting parameter No. 28 (internal torque limit 1), torque is always limited to the maximum value during operation. A relationship between limit value and servo motor torque is as in (5) in section 3.4.1. Note that the analog torque limit (TLA) is unavailable.

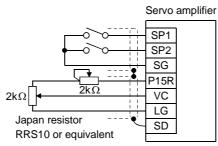

(3) Speed limit

(a) Speed limit value and speed

The speed is limited to the values set in parameters No. 8 to 10, 72 to 75 (internal speed limits 1 to 7) or the value set in the applied voltage of the analog speed limit (VLA).

A relationship between the analog speed limit (VLA) applied voltage and the servo motor speed is shown below.

When the servo motor speed reaches the speed limit value, torque control may become unstable. Make the set value more than 100r/min greater than the desired speed limit value.



The following table indicates the limit direction according to forward rotation selection (RS1) and reverse rotation selection (RS2) combination:

(Note) External input signals		Speed limit direction		
RS1	RS2	Analog spec	Internal speed	
KSI	K52	+ Polarity	Polarity	commands
1	0	CCW	CW	CCW
0	1	CW	CCW	CW

Note. 0: off 1: on

Generally, make connection as shown below:

(b) Speed selection 1(SP1)/speed selection 2(SP2)/speed selection 3(SP3) and speed limit values Choose any of the speed settings made by the internal speed limits 1 to 7 using speed selection 1(SP1), speed selection 2(SP2) and speed selection 3(SP3) or the speed setting made by the speed limit command (VLA), as indicated below.

Setting of parameter	(Note) Input si	gnals	Consort limit value	
No. 43 to 48	SP3	SP2	SP1	Speed limit value	
117		0	0	Analog speed limit (VLA)	
When speed selection		0	1	Internal speed limit 1 (parameter No. 8)	
(SP3) is not used (initial status)		1	0	Internal speed limit 2 (parameter No. 9)	
(Illitial Status)		1	1	Internal speed limit 3 (parameter No. 10)	
	0	0	0	Analog speed limit (VLA)	
	0	0	1	Internal speed limit 1 (parameter No. 8)	
	0	1	0	Internal speed limit 2 (parameter No. 9)	
When speed selection	0	1	1	Internal speed limit 3 (parameter No. 10)	
(SP3) is made valid	1	0	0	Internal speed limit 4 (parameter No. 72)	
	1	0	1	Internal speed limit 5 (parameter No. 73)	
	1	1	0	Internal speed limit 6 (parameter No. 74)	
	1	1	1	Internal speed limit 7 (parameter No. 75)	

Note. 0: off 1: on

When the internal speed limits 1 to 7 are used to command the speed, the speed does not vary with the ambient temperature.

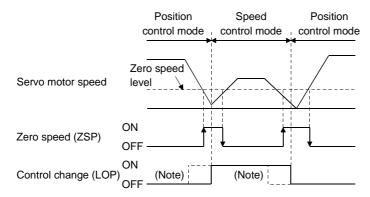
(c) Limiting speed (VLC)

VLC turns on when the servo motor speed reaches the speed limited using any of the internal speed limits 1 to 7 or the analog speed limit (VLA).

3.4.4 Position/speed control change mode

Set "0001" in parameter No. 0 to switch to the position/speed control change mode. This function is not available in the absolute position detection system.

(1) Control change (LOP)


Use control change (LOP) to switch between the position control mode and the speed control mode from an external contact. Relationships between LOP and control modes are indicated below:

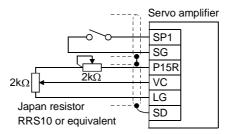
(Note) LOP	Servo control mode
0	Position control mode
1	Speed control mode

Note. 0: off 1: on

The control mode may be changed in the zero-speed status. To ensure safety, change control after the servo motor has stopped. When position control mode is changed to speed control mode, droop pulses are reset.

If the signal has been switched on-off at the speed higher than the zero speed and the speed is then reduced to the zero speed or less, the control mode cannot be changed. A change timing chart is shown below:

Note: When ZSP is not on, control cannot be changed if LOP is switched on-off. If ZSP switches on after that, control cannot not be changed.


(2) Torque limit in position control mode As in Section 3.4.1 (5).

(3) Speed setting in speed control mode

(a) Speed command and speed

The servo motor is run at the speed set in parameter No. 8 (internal speed command 1) or at the speed set in the applied voltage of the analog speed command (VC). A relationship between analog speed command (VC) applied voltage and servo motor speed and the rotation directions determined by the forward rotation start (ST1) and reverse rotation start (ST2) are as in (a), (1) in section 3.4.2.

Generally, make connection as shown below:

(b) Speed selection 1 (SP1) and speed command value

Use speed selection 1 (SP1) to select between the speed set by the internal speed command 1 and the speed set by the analog speed command (VC) as indicated in the following table:

(Note) External input signals	Chood command value	
SP1	Speed command value	
0	Analog speed command (VC)	
1	Internal speed command 1 (parameter No. 8)	

Note. 0: off 1: on

By making speed selection 2 (SP2) speed selection 3 (SP3) usable by setting of parameter No. 43 to 48, you can choose the speed command values of analog speed command (VC) and internal speed commands 1 to 7.

(Note) Ex	(Note) External input signals		Consideration of value
SP3	SP2	SP1	Speed command value
0	0	0	Analog speed command (VC)
0	0	1	Internal speed command 1 (parameter No. 8)
0	1	0	Internal speed command 2 (parameter No. 9)
0	1	1	Internal speed command 3 (parameter No. 10)
1	0	0	Internal speed command 4 (parameter No. 72)
1	0	1	Internal speed command 5 (parameter No. 73)
1	1	0	Internal speed command 6 (parameter No. 74)
1	1	1	Internal speed command 7 (parameter No. 75)

Note. 0: off

The speed may also be changed during rotation. In this case, it is increased or decreased according to the value set in parameter No. 11 or 12.

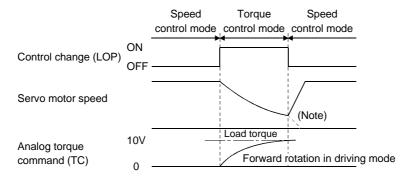
When the internal speed command 1 is used to command the speed, the speed does not vary with the ambient temperature.

(c) Speed reached (SA)

As in Section 3.4.2 (2).

3.4.5 Speed/torque control change mode

Set "0003" in parameter No. 0 to switch to the speed/torque control change mode.


(1) Control change (LOP)

Use control change (LOP) to switch between the speed control mode and the torque control mode from an external contact. Relationships between LOP and control modes are indicated below:

(Note) LOP	Servo control mode
0	Speed control mode
1	Torque control mode

Note. 0: off 1: on

The control mode may be changed at any time. A change timing chart is shown below:

Note: When the start (ST1·ST2) is switched off as soon as the mode is changed to speed control, the servo motor comes to a stop according to the deceleration time constant.

- (2) Speed setting in speed control mode As in Section 3.4.2 (1).
- (3) Torque limit in speed control mode As in Section 3.4.1 (5).

(4) Speed limit in torque control mode

(a) Speed limit value and speed

The speed is limited to the limit value set in parameter No. 8 (internal speed limit 1) or the value set in the applied voltage of the analog speed limit (VLA). A relationship between the analog speed limit (VLA) applied voltage and the servo motor speed is as in (a), (3) in section 3.4.3. Generally, make connection as shown below:

Servo amplifier SP1 SG P15R VLA LG SD RRS10 or equivalent

(b) Speed selection 1 (SP1) and speed limit value

Use speed selection 1 (SP1) to select between the speed set by the internal speed command 1 and the speed set by the analog speed limit (VLA) as indicated in the following table:

(Note) External input signals	Speed command value	
SP1		
0	Analog speed limit (VLA)	
1	Internal speed limit 1 (parameter No. 8)	

Note. 0: off 1: on

When the internal speed limit 1 is used to command the speed, the speed does not vary with the ambient temperature.

- (c) Limiting speed (VLC)
 As in (c), (3) in section 3.4.3.
- (5) Torque control in torque control mode As in Section 3.4.3 (1).
- (6) Torque limit in torque control mode As in Section 3.4.3 (2).

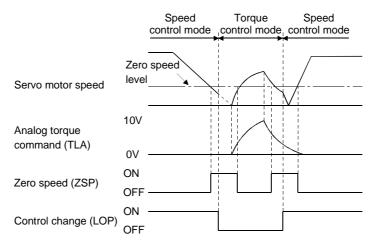
3.4.6 Torque/position control change mode

Set "0005" in parameter No. 0 to switch to the torque/position control change mode.

(1) Control change (LOP)

Use control change (LOP) to switch between the torque control mode and the position control mode from an external contact. Relationships between LOP and control modes are indicated below:

(Note) LOP	Servo control mode
0	Torque control mode
1	Position control mode

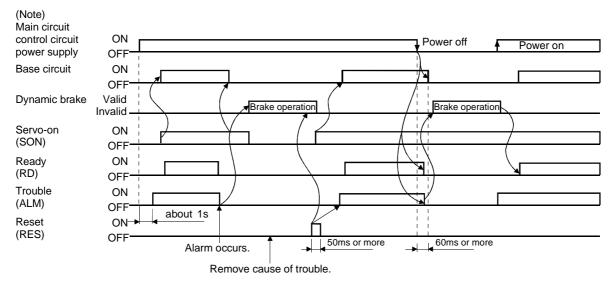

Note. 0: off

1: on

The control mode may be changed in the zero-speed status.

To ensure safety, change control after the servo motor has stopped. When position control mode is changed to torque control mode, droop pulses are reset.

If the signal has been switched on-off at the speed higher than the zero speed and the speed is then reduced to the zero speed or less, the control mode cannot be changed. A change timing chart is shown below:


- (2) Speed limit in torque control mode As in Section 3.4.3 (3).
- (3) Torque control in torque control mode As in Section 3.4.3 (1).
- (4) Torque limit in torque control mode As in Section 3.4.3 (2).
- (5) Torque limit in position control mode As in Section 3.4.1 (5).

3.5 Alarm occurrence timing chart

- When an alarm has occurred, remove its cause, make sure that the operation signal is not being input, ensure safety, and reset the alarm before restarting operation.
- As soon as an alarm occurs, turn off Servo-on (SON) and power off the main circuit.

When an alarm occurs in the servo amplifier, the base circuit is shut off and the servo motor is coated to a stop. Switch off the main circuit power supply in the external sequence. To reset the alarm, switch the control circuit power supply from off to on, press the "SET" button on the current alarm screen, or turn the reset (RES) from off to on. However, the alarm cannot be reset unless its cause is removed.

Note. Shut off the main circuit power as soon as an alarm occurs.

(1) Overcurrent, overload 1 or overload 2

If operation is repeated by switching control circuit power off, then on to reset the overcurrent (AL.32), overload 1 (AL.50) or overload 2 (AL.51) alarm after its occurrence, without removing its cause, the servo amplifier and servo motor may become faulty due to temperature rise. Securely remove the cause of the alarm and also allow about 30 minutes for cooling before resuming operation.

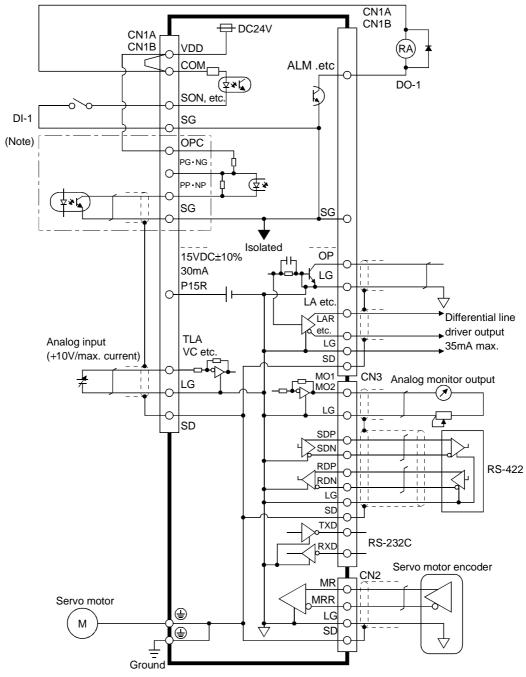
(2) Regenerative alarm

If operation is repeated by switching control circuit power off, then on to reset the regenerative (AL.30) alarm after its occurrence, the external regenerative brake resistor will generate heat, resulting in an accident.

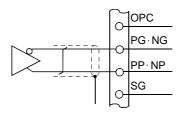
(3) Instantaneous power failure

Undervoltage (AL.10) occurs when the input power is in either of the following statuses.

- A power failure of the control circuit power supply continues for 60ms or longer and the control circuit is not completely off.
- The bus voltage dropped to 200VDC or less for the MR-J2S- \square A, or to 158VDC or less for the MR-J2S- \square A1.


(4) In position control mode (incremental)

When an alarm occurs, the home position is lost. When resuming operation after deactivating the alarm, make a home position return.

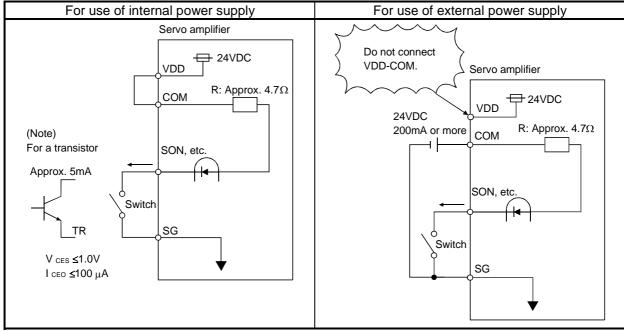

3.6 Interfaces

3.6.1 Common line

The following diagram shows the power supply and its common line.

Note. For the open collection pulse train input. Make the following connection for the different line driver pulse train input.

3.6.2 Detailed description of the interfaces

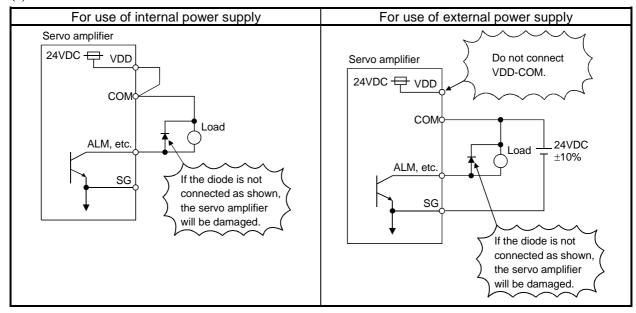

This section gives the details of the I/O signal interfaces (refer to I/O Division in the table) indicated in Sections 3.3.2.

Refer to this section and connect the interfaces with the external equipment.

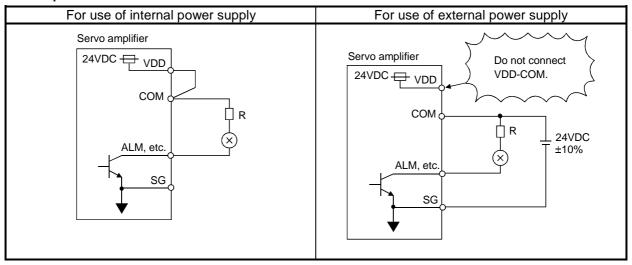
(1) Digital input interface DI-1

Give a signal with a relay or open collector transistor.

Source input is also possible. Refer to (7) in this section.

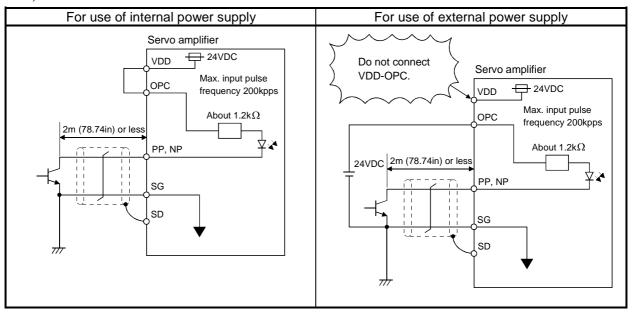


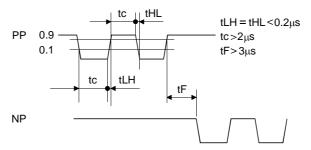
Note. This also applies to the use of the external power supply.


(2) Digital output interface DO-1

A lamp, relay or photocoupler can be driven. Provide a diode (D) for an inductive load, or an inrush current suppressing resister (R) for a lamp load. (Permissible current: 40mA or less, inrush current: 100mA or less)

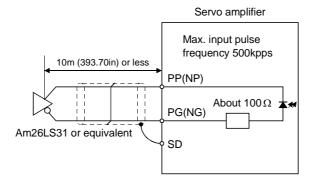
(a) Inductive load


(b) Lamp load

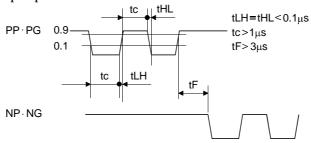

(3) Pulse train input interface DI-2

Provide a pulse train signal in the open collector or differential line driver system.

- (a) Open collector system
 - 1) Interface



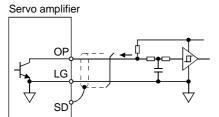
2) Conditions of the input pulse

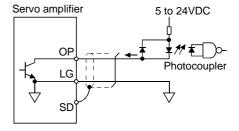


(b) Differential line driver system

1) Interface

2) Conditions of the input pulse

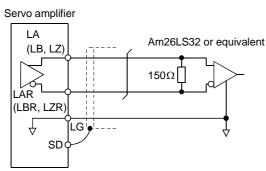


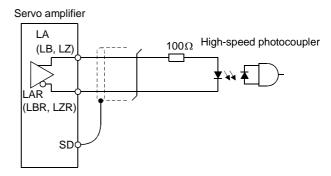

(4) Encoder pulse output DO-2

(a) Open collector system

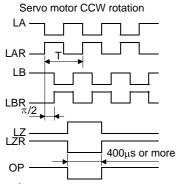
Interface

Max. output current : 35mA

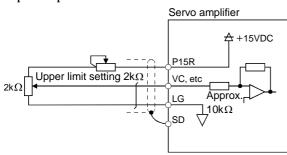




(b) Differential line driver system


1) Interface

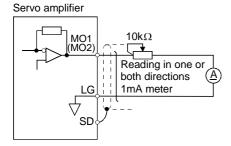
Max. output current: 35mA


2) Output pulse

The time cycle (T) is determined by the setting of the parameter No. 27 and 54.

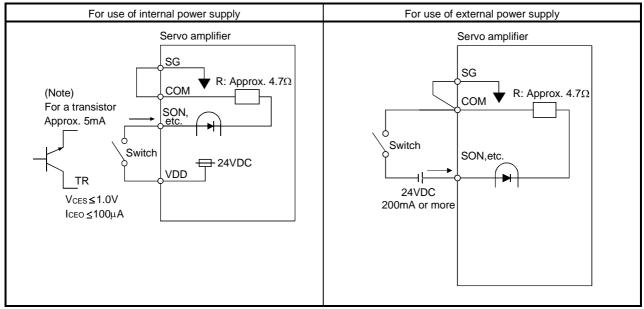
(5) Analog input

Input impedance 10 to $12k\Omega$


(6) Analog output

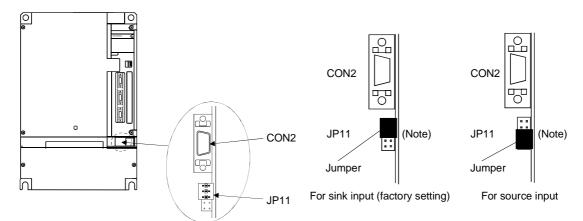
Output voltage ±10V

Max.1mA


Max. output current

Resolution: 10 bit

(7) Source input interface


When using the input interface of source type, all Dl-1 input signals are of source type. Source output cannot be provided.

Note. This also applies to the use of the external power supply.

When using the input interface of source type, all Dl-1 input signals are of source type. Source output cannot be provided.

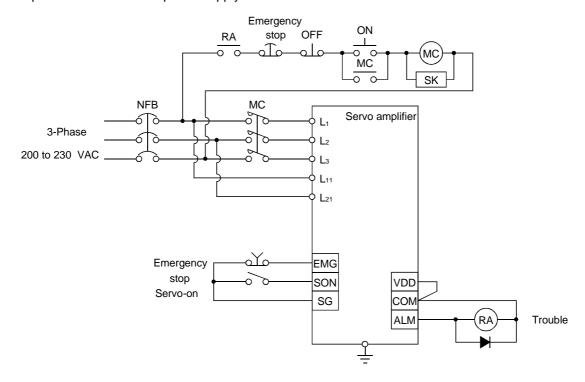
For 11kW or more, the source input interface cannot be used with the internal power supply. Always use the external power supply.

Note. The jumper, which is shown black for the convenience of explanation, is actually white.

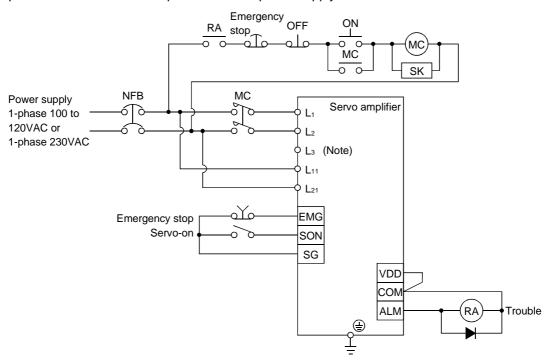
3.7 Input power supply circuit

- When the servo amplifier has become faulty, switch power off on the servo amplifier power side. Continuous flow of a large current may cause a fire.
- Use the trouble signal to switch power off. Otherwise, a regenerative brake transistor fault or the like may overheat the regenerative brake resistor, causing a fire.

POINT


• For the power line circuit of the MR-J2S-11KA to MR-J2S-22KA, refer to Section 3.13 where the power line circuit is shown together with the servo motor connection diagram.

3.7.1 Connection example


Wire the power supply and main circuit as shown below so that the servo-on (SON) turns off as soon as alarm occurrence is detected and power is shut off.

A no-fuse breaker (NFB) must be used with the input cables of the power supply.

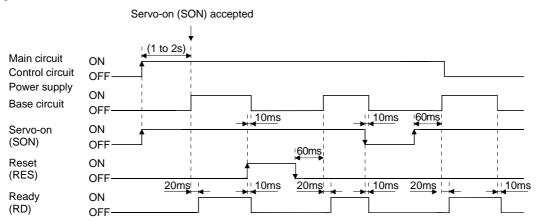
(1) For 3-phase 200 to 230VAC power supply

(2) For 1-phase 100 to 120VAC or 1-phase 230VAC power supply

Note. Not provided for 1-phase 100 to 120VAC.

3.7.2 Terminals

The positions and signal arrangements of the terminal blocks change with the capacity of the servo amplifier. Refer to Section 11.1.

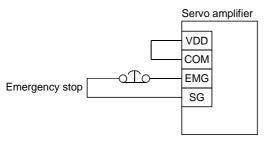

Symbol	Connection Target (Application)		Description		
	(Арріїсаціон)	Supply L ₁ , L ₂ and L ₃ with the fo	llowing power:		
		For 1-phase 230VAC, connect th	e power supply	to L ₁ /L ₂ and	d leave L3 open.
L ₁ , L ₂ , L ₃	Main circuit power supply	Servo amplifier Power supply	MR-J2S-10A to 70A	MR-J2S-1 to 22k/	
		3-phase 200 to 230VAC, 50/60Hz	L ₁ · L		10 40/41
		1-phase 230VAC, 50/60Hz	L ₁ • L ₂		
		1-phase 100 to 120VAC, 50/60Hz			$L_1 \cdot L_2$
U, V, W	Servo motor output	Connect to the servo motor power	er supply termin	als (U, V, V	W).
		Supply L11 and L12 with the foll	owing power.		
	Control circuit power supply	Servo amplifier Power supply	MR-J2S-10A to	700A M	1R-J2S-10A1 to 40A1
L ₁₁ , L ₂₁		1-phase 200 to 230VAC, 50/60Hz	L11 • L21		
		1-phase 100 to 120VAC, 50/60Hz			L11 • L21
		1) MR-J2S-350A or less			
		Wiring is factory-connected across P-D (servo amplifier built-in regenerative			
		brake resistor).			
		When using the regenerative brake option, always remove the wiring from			
P, C, D	Dogonorativo broko ontion	across P-D and connect the regenerative brake option across P-C. 2) MR-J2S-500A • 700A			
1 , C, D	Regenerative brake option	Wiring is factory-connected across P-C (servo amplifier built-in regenerative			
		brake resistor).			
		When using the regenerative brake option, always remove the wiring from			
		across P-C and connect the regenerative brake option across P-C.			
	Refer to Section 13.1.1 for details.				
Return converter When using the return converter or brake unit, connect it acr					
N	Brake unit	Do not connect it to the servo amplifier of MR-J2S-350A or less. Refer to Sections 13.1.2 and 13.1.3 for details.			
	Protective earth (PE)	Connect this terminal to the protective earth (PE) terminals of the servo motor and control box for grounding.			

3.7.3 Power-on sequence

(1) Power-on procedure

- 1) Always wire the power supply as shown in above Section 3.7.1 using the magnetic contactor with the main circuit power supply (three-phase 200V: L1, L2, L3, single-phase 230V, single-phase 100V: L1, L2). Configure up an external sequence to switch off the magnetic contactor as soon as an alarm occurs.
- 2) Switch on the control circuit power supply L11, L21 simultaneously with the main circuit power supply or before switching on the main circuit power supply. If the main circuit power supply is not on, the display shows the corresponding warning. However, by switching on the main circuit power supply, the warning disappears and the servo amplifier will operate properly.
- 3) The servo amplifier can accept the servo-on (SON) about 1 to 2s after the main circuit power supply is switched on. Therefore, when SON is switched on simultaneously with the main circuit power supply, the base circuit will switch on in about 1 to 2s, and the ready (RD) will switch on in further about 20ms, making the servo amplifier ready to operate. (Refer to paragraph (2) in this section.)
- 4) When the reset (RES) is switched on, the base circuit is shut off and the servo motor shaft coasts.

(2) Timing chart


Power-on timing chart

(3) Emergency stop

Make up a circuit that shuts off main circuit power as soon as EMG is turned off at an emergency stop. When EMG is turned off, the dynamic brake is operated to bring the servo motor to a sudden stop. At this time, the display shows the servo emergency stop warning (AL.E6).

During ordinary operation, do not use the external emergency stop (EMG) to alternate stop and run. The servo amplifier life may be shortened.

Also, if the forward rotation start (ST1) and reverse rotation start (ST2) are on or a pulse train is input during an emergency stop, the servo motor will rotate as soon as the warning is reset. During an emergency stop, always shut off the run command.

3.8 Connection of servo amplifier and servo motor

3.8.1 Connection instructions

WARNING Insulate the connections of the power supply terminals to prevent an electric shock.

ACAUTION

- Connect the wires to the correct phase terminals (U, V, W) of the servo amplifier and servo motor. Otherwise, the servo motor will operate improperly.
- Do not connect AC power supply directly to the servo motor. Otherwise, a fault may occur.

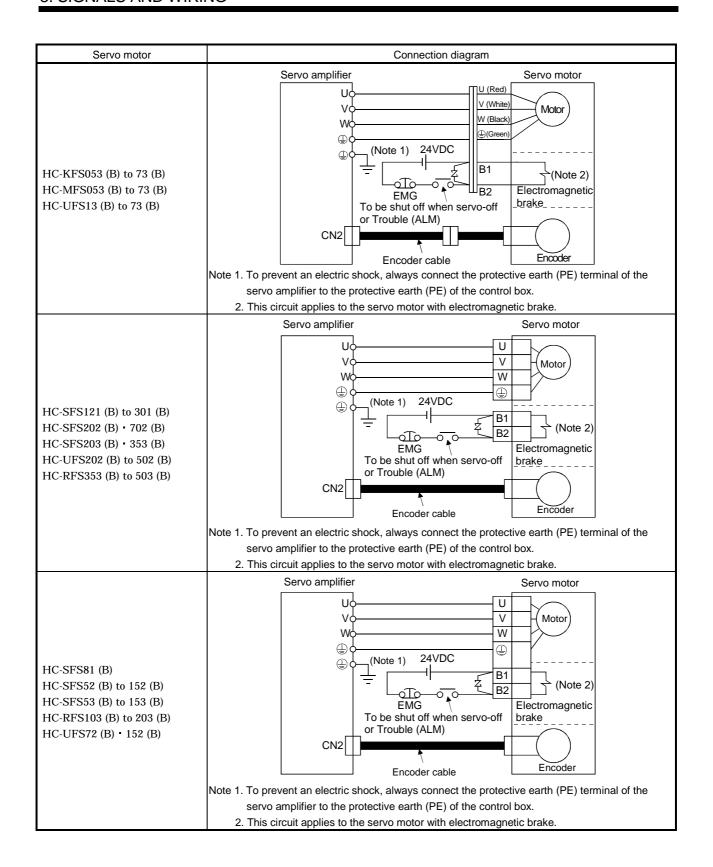
POINT

• Do not apply the test lead bars or like of a tester directly to the pins of the connectors supplied with the servo motor. Doing so will deform the pins, causing poor contact.

The connection method differs according to the series and capacity of the servo motor and whether or not the servo motor has the electromagnetic brake. Perform wiring in accordance with this section.

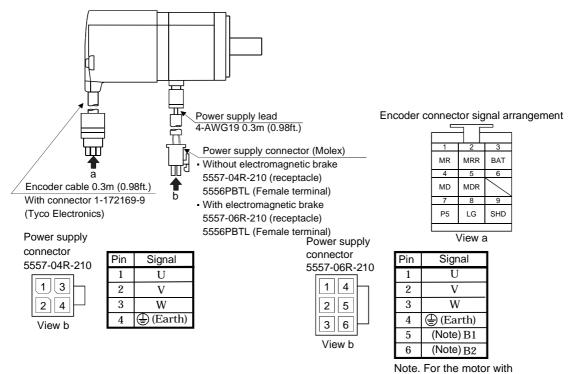
(1) For grounding, connect the earth cable of the servo motor to the protective earth (PE) terminal of the servo amplifier and connect the ground cable of the servo amplifier to the earth via the protective earth of the control box. Do not connect them directly to the protective earth of the control panel.

(2) Do not share the 24VDC interface power supply between the interface and electromagnetic brake. Always use the power supply designed exclusively for the electromagnetic brake.


3.8.2 Connection diagram

The following table lists wiring methods according to the servo motor types. Use the connection diagram which conforms to the servo motor used. For cables required for wiring, refer to Section 13.2.1. For encoder cable connection, refer to Section 13.1.5. For the signal layouts of the connectors, refer to Section 3.8.3

For the servo motor connector, refer to Chapter 3 of the Servo Motor Instruction Manual.


POINT

• For the connection diagram of the MR-J2S-11KA to MR-J2S-22KA, refer to Section 3.13 where the connection diagram is shown together with the power line circuit.

3.8.3 I/O terminals

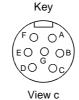
(1) HC-KFS • HC-MFS • HC-UFS3000r/min series

electromagnetic brake, supply electromagnetic brake power (24VDC). There is no polarity.

(2) HC-SFS • HC-RFS • HC-UFS2000 r/min series

	Servo motor side connectors			
Servo motor	For power supply	For encoder	Electromagnetic brake connector	
HC-SFS81(B) HC-SFS52(B) to 152(B) HC-SFS53(B) to 153(B)	CE05-2A22- 23PD-B		The connector for power is shared.	
HC-SFS121(B) to 301(B) HC-SFS202(B) to 502 (B) HC-SFS203(B) • 353(B)	CE05-2A24- 10PD-B	MS3102A20- 29P	MS3102A10SL-	
HC-SFS702(B)	CE05-2A32- 17PD-B		4P	
HC-RFS103(B) to 203 (B)	CE05-2A22- 23PD-B			
HC-RFS353(B) • 503(B)	CE05-2A24- 10PD-B		The connector for power is	
HC-UFS72(B) • 152(B)	CE05-2A22- 23PD-B		shared.	
HC-UFS202(B) to 502(B)	CE05-2A24- 10PD-B		MS3102A10SL- 4P	

Power supply connector signal arrangement


CE05-2A22-23PD-B

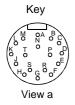
CE05-2A24-10PD-B

CE05-2A32-17PD-B

Pin	Signal
Α	U
В	V
С	W
D	(Earth)
E	
F	
G	(Note) B1
Н	(Note) B2

Pin Signal
A U
B V
C W
D (Earth)
E (Note) B1
F (Note) B2

Pin	Signal
Α	U
В	V
С	W
D	(Earth)


Note. For the motor with electromagnetic brake, supply electromagnetic brake power (24VDC). There is no polarity.

Note. For the motor with electromagnetic brake, supply electromagnetic brake power (24VDC). There is no polarity.

Encoder connector signal arrangement

Electromagnetic brake connector signal arrangement

MS3102A20-29P

Pin	Signal
Α	MD
В	MDR
С	MR
D	MRR
Е	
F	BAT
G	LG
Н	
J	

Pin	Signal
K	
L	
M	
N	SD
P	
R	LG
S	P5
T	

Key			
(AO	Ов		
View b			

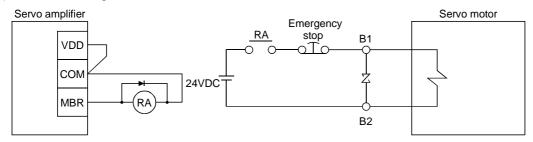
MS3102A10SL-4P

Pin	Signal
Α	(Note)B1
В	(Note)B2

Note. For the motor with electromagnetic brake, supply electromagnetic brake power (24VDC). There is no polarity.

3.9 Servo motor with electromagnetic brake

 Configure the electromagnetic brake operation circuit so that it is activated not only by the servo amplifier signals but also by an external emergency stop signal. Contacts must be open when Circuit must be servo-off, when an trouble (ALM) opened during and when an electromagnetic brake emergency stop (EMG). interlock (MBR). Servo motor EMG RA ഹ CAUTION 24VDC Electromagnetic brake The electromagnetic brake is provided for holding purpose and must not be used for ordinary braking. Before performing the operation, be sure to confirm that the elecromagnetic brake operates properly.

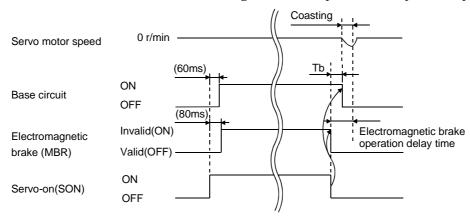

POINT

• Refer to the Servo Motor Instruction Manual for specifications such as the power supply capacity and operation delay time of the electromagnetic brake.

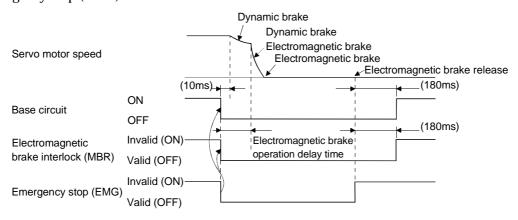
Note the following when the servo motor equipped with electromagnetic brake is used:

- 1) Set "□□1□"in parameter No.1 to make the electromagnetic brake interlock (MBR) valid. Note that this will make the zero speed signal (ZSP) unavailable.
- 2) Do not share the 24VDC interface power supply between the interface and electromagnetic brake. Always use the power supply designed exclusively for the electromagnetic brake.
- 3) The brake will operate when the power (24VDC) switches off.
- 4) While the reset (RES) is on, the base circuit is shut off. When using the servo motor with a vertical shaft, use the electromagnetic brake interlock (MBR).
- 5) Switch off the servo-on (SON) after the servo motor has stopped.

(1) Connection diagram

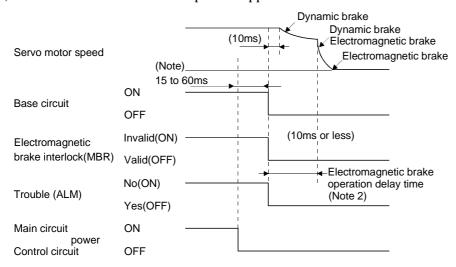

(2) Setting

- 1) Set "□□1□" in parameter No.1 to make the electromagnetic brake interlock (MBR) valid.
- 2) Using parameter No. 33 (electromagnetic brake sequence output), set a time delay (Tb) at servo-off from electromagnetic brake operation to base circuit shut-off as in the timing chart shown in (3) in this section.

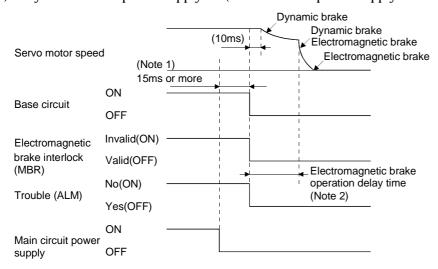

(3) Timing charts

(a) Servo-on (SON) command (from controller) ON/OFF


Tb [ms] after the servo-on (SON) signal is switched off, the servo lock is released and the servo motor coasts. If the electromagnetic brake is made valid in the servo lock status, the brake life may be shorter. Therefore, when using the electromagnetic brake in a vertical lift application or the like, set Tb to about the same as the electromagnetic brake operation delay time to prevent a drop.


(b) Emergency stop (EMG) ON/OFF

(c) Alarm occurrence



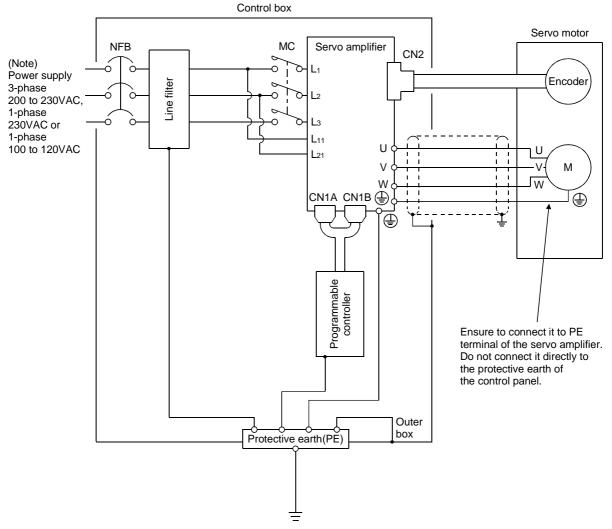
(d) Both main and control circuit power supplies off

Note. Changes with the operating status.

(e) Only main circuit power supply off (control circuit power supply remains on)

Note 1. Changes with the operating status.

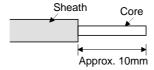
 When the main circuit power supply is off in a motor stop status, the main circuit off warning (A.E9) occurs and the trouble (ALM) does not turn off.


3.10 Grounding

- Ground the servo amplifier and servo motor securely.
- To prevent an electric shock, always connect the protective earth (PE) terminal of the servo amplifier with the protective earth (PE) of the control box.

The servo amplifier switches the power transistor on-off to supply power to the servo motor. Depending on the wiring and ground cablerouting, the servo amplifier may be affected by the switching noise (due to di/dt and dv/dt) of the transistor. To prevent such a fault, refer to the following diagram and always ground.

To conform to the EMC Directive, refer to the EMC Installation Guidelines (IB(NA)67310).


Note. For 1-phase 230VAC, connect the power supply to $L_1 \cdot L_2$ and leave L_3 open. There is no L_3 for 1-phase 100 to 120VAC power supply.

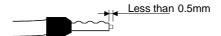
3.11 Servo amplifier terminal block (TE2) wiring method

POINT	
	able 13.1 (2) and (4) in Section 13.2.1 for the wire sizes used for
wiring.	

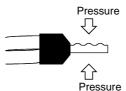
- 3.11.1 For the servo amplifier produced later than Jan. 2006
- (1) Termination of the cables
 - (a) Solid wire

After the sheath has been stripped, the cable can be used as it is.

- (b) Twisted wire:
 - 1)When the wire is inserted directly

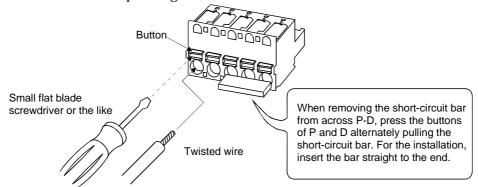

Use the cable after stripping the sheath and twisting the core. At this time, take care to avoid a short caused by the loose wires of the core and the adjacent pole. Do not solder the core as it may cause a contact fault. Alternatively, a bar terminal may be used to put the wires together.

2) When the wires are put together

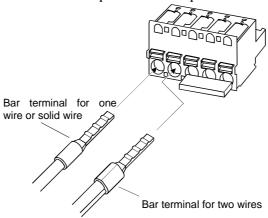

Using a bar terminal.

Cable	Size	Bar Terminal Type		Onimanian Tabl	Malian
[mm ²]	AWG	For 1 cable	For 2 cables	Crimping Tool	Maker
1.25/1.5	16	AI1.5-10BK	AI-TWIN×1.5-10BK		
2/2.5	14	AI2.5-10BU		CRIMPFOX ZA 3	Phoenix Contact

Cut the wire running out of bar terminal to less than 0.5mm.


When using a bar terminal for two wires, insert the wires in the direction where the insulation sleeve does not interfere with the next pole and pressure them.

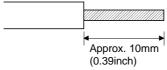
(2) Termination of the cables


(a) When the wire is inserted directly

Insert the wire to the end pressing the button with a small flat blade screwdriver or the like.

(b) When the wires are put together using a bar terminal

Insert a bar terminal with the odd-shaped side of the pressured terminal on the button side.

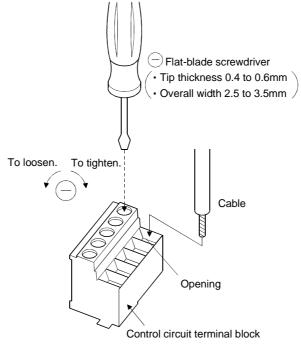


When the two wires are inserted into one opening, a bar terminal for two wires is required.

3.11.2 For the servo amplifier produced earlier than Dec. 2005

(1) Termination of the cables

Solid wire: After the sheath has been stripped, the cable can be used as it is.

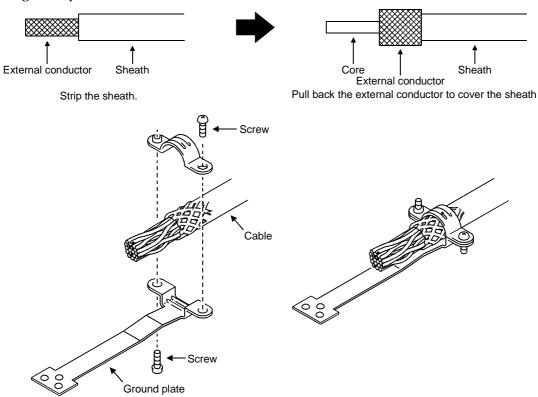

Twisted wire: Use the cable after stripping the sheath and twisting the core. At this time, take care to avoid a short caused by the loose wires of the core and the adjacent pole. Do not solder the core as it may cause a contact fault. Alternatively, a bar terminal may be used to put the wires together.

Cable Size		Bar Terminal Type		Cuinania a Ta al	Malian
[mm2]	AWG	For 1 cable	For 2 cables	Crimping Tool	Maker
1.25/1.5	16	AI1.5-10BK	AI-TWIN×1.5-10BK	CRIMPFOX ZA 3	
2/2.5	14	AI2.5-10BU		or	Phoenix Contact
2/2.5	14			CRIMPFOX UD 6	

(2) Connection

Insert the core of the cable into the opening and tighten the screw with a flat-blade screwdriver so that the cable does not come off. (Tightening torque: 0.3 to $0.4N \cdot m(2.7$ to 3.5 lb \cdot in)) Before inserting the cable into the opening, make sure that the screw of the terminal is fully loose.

When using a cable of 1.5mm² or less, two cables may be inserted into one opening.



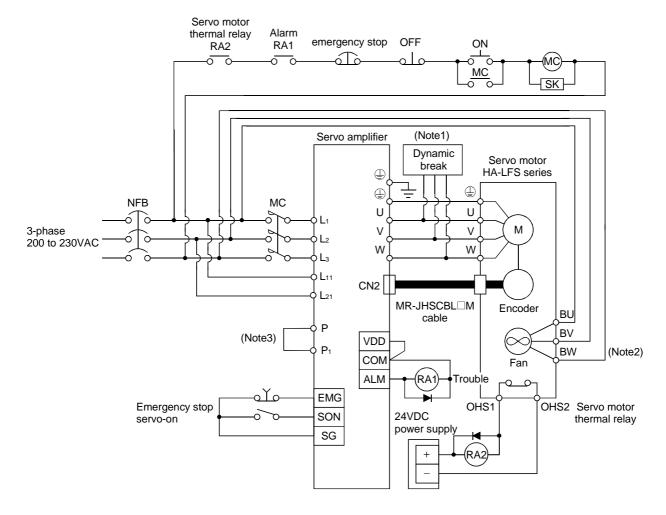
Use of a flat-blade torque screwdriver is recommended to manage the screw tightening torque. The following table indicates the recommended products of the torque screwdriver for tightening torque management and the flat-blade bit for torque screwdriver. When managing torque with a Phillips bit, please consult us.

Product	Model	Maker/Representative	
Torque screwdriver	N6L TDK	Nakamura Seisakusho	
Bit for torque screwdriver	B-30, flat-blade, H3.5 X 73L	Shiro Sangyo	

3.12 Instructions for the 3M connector

When fabricating an encoder cable or the like, securely connect the shielded external conductor of the cable to the ground plate as shown in this section and fix it to the connector shell.

3.13 Power line circuit of the MR-J2S-11KA to MR-J2S-22KA


- When the servo amplifier has become faulty, switch power off on the amplifier power side. Continuous flow of a large current may cause a fire.
- Use the trouble (ALM) to switch power off. Otherwise, a regenerative brake transistor fault or the like may overheat the regenerative brake resistor, causing a fire.

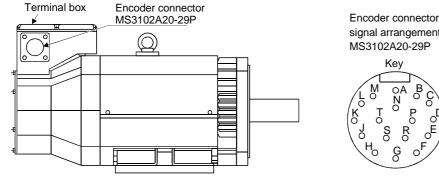
POINT

• The power-on sequence is the same as in Section 5.7.3.

3.13.1 Connection example

Wire the power supply/main circuit as shown below so that power is shut off and the servo-on signal turned off as soon as an alarm occurs, a servo emergency stop is made valid, a controller emergency stop, or a servo motor thermal relay alarm is made valid. A no-fuse breaker (NFB) must be used with the input cables of the power supply.

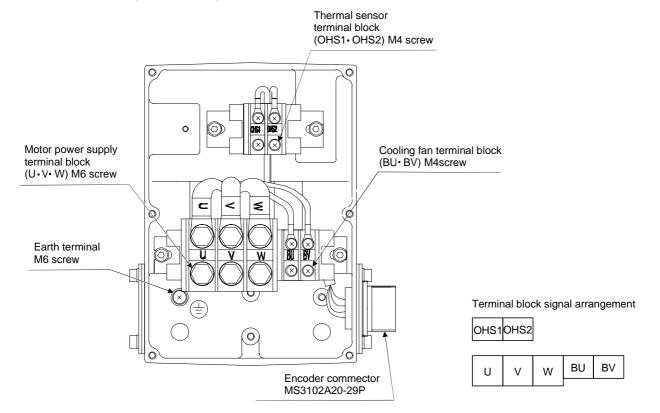
Note 1. When using the external dynamic break, refer to section 13.1.4.


- 2. There is no BW when the HA-LFS11K2 is used.
- 3. Always connect P-P₁. (Factory-wired.) When using the power factor improving DC reactor, refer to Section 13.2.4

3.13.2 Servo amplifier terminals

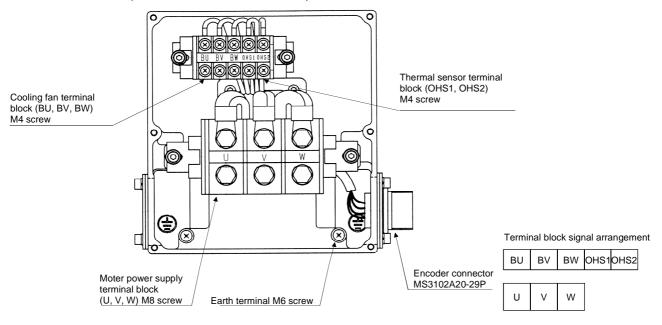
The positions and signal arrangements of the terminal blocks change with the capacity of the servo amplifier. Refer to Section 11.1.

Symbol	Connection Target (Application)	Description
L1, L2, L3	Main circuit power supply	Supply L_1 , L_2 and L_3 with three-phase 200 to 230VAC, 50/60Hz power.
U, V, W	Servo motor output	Connect to the servo motor power supply terminals (U, V, W).
L ₁₁ , L ₂₁	Control circuit power supply	Supply L_{11} and L_{21} with single-phase 200 to 230VAC power.
Р, С	Regenerative brake option	The servo amplifier built-in regenerative brake resistor is not connected at the time of shipment. When using the regenerative brake option, wire it across P-C. Refer to Section 13.1.1 for details.
N	Return converter Brake unit	When using the return converter or brake unit, connect it across P-N. Refer to Sections 13.1.2 and 13.1.3 for details.
	Protective earth (PE)	Connect this terminal to the protective earth (PE) terminals of the servo motor and control box for grounding.
P ₁ , P	Power factor improving DC reactors	P ₁ -P are connected before shipment. When connecting a power factor improving DC reactor, remove the short bar across P ₁ -P. Refer to Section 13.2.4 for details.


3.13.3 Servo motor terminals

Endoaci connector				
signal arrangement				
MS3102A20-29P				
Key				
M OA B				
L M OA B C				
/K I P D				
\				
H G F				
0				

Pin	Signal	Pin	Signa
A	MD	K	
В	MDR	L	
С	MR	M	
D	MRR	N	SHD
Е		P	
F	BAT	R	LG
G	LG	S	P5
Н		T	
J			


Terminal box inside (HA-LFS11K2)

Power supply connection screw size

Servo motor	Power supply connection screw size
HA-LFS11K2	M6

Terminal box inside (HA-LFS15K2 • HA-LFS-22K2)

Power supply connection screw size

Servo motor	Power supply connection screw size
HA-LFS15K2) f0
HA-LFS22K2	M8

Signal Name	Description					
Power supply	U·V·W	Connect to the motor output terminals (U, V, W) of the servo amplifier.				
		Supply power which satisfies the following specifications.				
		HA-LFS11K2				
		Item Description				
		Voltage/frequency single-phase 200 to 220VAC, 50Hz single-phase 200 to 230VAC, 60Hz				
		Power consumption [W] 42(50Hz)/54(60Hz)				
	(Note) BU•BV•BW	Rated voltage [V] 0.12(50Hz)/0.25(60Hz)				
Cooling fan		HA-LFS15K2/22K2				
		Item Description				
		Voltage/frequency Three-phase 200 to 220VAC, 50Hz Three-phase 200 to 230VAC, 60Hz				
		Power consumption [W] 32(50Hz)/40(60Hz)				
		Rated voltage [V] 0.30(50Hz)/0.25(60Hz)				
Motor thermal relay	OHS1 • OHS2	OHS1-OHS2 are opened when heat is generated to an abnormal temperature.				
Earth terminal		For grounding, connect to the earth of the control box via the earth terminal of the servo				

Note. There is no BW when the HA-LFS11K2 is used.

MEMO		

4. OPERATION

4.1 When switching power on for the first time

Before starting operation, check the following:

(1) Wiring

- (a) A correct power supply is connected to the power input terminals (L1, L2, L3, L11, L21) of the servo amplifier.
- (b) The servo motor power supply terminals (U, V, W) of the servo amplifier match in phase with the power input terminals (U, V, W) of the servo motor.
- (c) The servo motor power supply terminals (U, V, W) of the servo amplifier are not shorted to the power input terminals (L1, L2, L3) of the servo motor.
- (d) The earth terminal of the servo motor is connected to the PE terminal of the servo amplifier.
- (e) Note the following when using the regenerative brake option, brake unit or power regeneration converter:
 - 1) For the MR-J2S-350A or less, the lead has been removed from across D-P of the control circuit terminal block, and twisted cables are used for its wiring.
 - 2) For the MR-J2S-500A or more, the lead has been removed from across P-C of the servo amplifier built-in regenerative brake resistor, and twisted cables are used for its wiring.
- (f) When stroke end limit switches are used, LSP and LSN are on during operation.
- (g) 24VDC or higher voltages are not applied to the pins of connectors CN1A and CN1B.
- (h) SD and SG of connectors CN1A and CN1B are not shorted.
- (i) The wiring cables are free from excessive force.

(2) Environment

Signal cables and power cables are not shorted by wire offcuts, metallic dust or the like.

(3) Machine

- (a) The screws in the servo motor installation part and shaft-to-machine connection are tight.
- (b) The servo motor and the machine connected with the servo motor can be operated.

4.2 Startup

MARNING

• Do not operate the switches with wet hands. You may get an electric shock.

A CAUTION

- Before starting operation, check the parameters. Some machines may perform unexpected operation.
- Take safety measures, e.g. provide covers, to prevent accidental contact of hands and parts (cables, etc.) with the servo amplifier heat sink, regenerative brake resistor, servo motor, etc.since they may be hot while power is on or for some time after power-off. Their temperatures may be high and you may get burnt or a parts may damaged.
- During operation, never touch the rotating parts of the servo motor. Doing so can cause injury.

Connect the servo motor with a machine after confirming that the servo motor operates properly alone.

4.2.1 Selection of control mode

Use parameter No. 0 to choose the control mode used. After setting, this parameter is made valid by switching power off, then on.

4.2.2 Position control mode

(1) Power on

- 1) Switch off the servo-on (SON).
- 2) When main circuit power/control circuit power is switched on, the display shows "C (Cumulative feedback pulses)", and in two second later, shows data.
 - In the absolute position detection system, first power-on results in the absolute position lost (AL.25) alarm and the servo system cannot be switched on. This is not a failure and takes place due to the uncharged capacitor in the encoder.
 - The alarm can be deactivated by keeping power on for a few minutes in the alarm status and then switching power off once and on again.
 - Also in the absolute position detection system, if power is switched on at the servo motor speed of 500r/min or higher, position mismatch may occur due to external force or the like. Power must therefore be switched on when the servo motor is at a stop.

(2) Test operation 1

Using jog operation in the test operation mode, operate at the lowest speed to confirm that the servo motor operates. (Refer to Section 6.8.2.)

(3) Parameter setting

Set the parameters according to the structure and specifications of the machine. Refer to Chapter 5 for the parameter definitions and to Sections 6.5 for the setting method.

Parameter No.	Name	Setting	Description
1 ()	Control mode, regenerative brake option selection	Position control mode MR-RB12 regenerative brake option is used.	
1	Function selection 1	0□02 	— Input filter 3.555ms (initial value) — Electromagnetic brake interlock signal is not used. — Used in incremental positioning system.
2	Auto tuning	□1□5 T T	— Middle response (initial value) is selected. — Auto tuning mode 1 is selected.
3	Electronic gear numerator (CMX)	1	Electronic gear numerator
4	Electronic gear denominator (CDV)	1	Electronic gear denominator

After setting the above parameters, switch power off once. Then switch power on again to make the set parameter values valid.

(4) Servo-on

Switch the servo-on in the following procedure:

- 1) Switch on main circuit/control circuit power supply.
- 2) Switch on the servo-on (SON).

When placed in the servo-on status, the servo amplifier is ready to operate and the servo motor is locked.

(5) Command pulse input

Entry of a pulse train from the positioning device rotates the servo motor. At first, run it at low speed and check the rotation direction, etc. If it does not run in the intended direction, check the input signal.

On the status display, check the speed, command pulse frequency, load factor, etc. of the servo motor. When machine operation check is over, check automatic operation with the program of the positioning device.

This servo amplifier has a real-time auto tuning function under model adaptive control. Performing operation automatically adjusts gains. The optimum tuning results are provided by setting the response level appropriate for the machine in parameter No. 2. (Refer to chapter 7)

(6) Home position return

Make home position return as required.

(7) Stop

In any of the following statuses, the servo amplifier interrupts and stops the operation of the servo motor:

Refer to Section 3.9, (2) for the servo motor equipped with electromagnetic brake. Note that the stop pattern of stroke end (LSP/LSN) OFF is as described below.

(a) Servo-on (SON) OFF

The base circuit is shut off and the servo motor coasts.

(b) Alarm occurrence

When an alarm occurs, the base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden stop.

(c) Emergency stop (EMG) OFF

The base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden stop. Alarm AL.E6 occurs.

(d) Forward rotation stroke end (LSP), reverse rotation stroke end (LSN) OFF

The droop pulse value is erased and the servo motor is stopped and servo-locked. It can be run in the opposite direction.

4.2.3 Speed control mode

(1) Power on

- 1) Switch off the servo-on (SON).
- 2) When main circuit power/control circuit power is switched on, the display shows "r (servo motor speed)", and in two second later, shows data.

(2) Test operation

Using jog operation in the test operation mode, operate at the lowest speed to confirm that the servo motor operates. (Refer to Section 6.8.2.)

(3) Parameter setting

Set the parameters according to the structure and specifications of the machine. Refer to Chapter 5 for the parameter definitions and to Sections 6.5 for the setting method.

Parameter No.	Name	Setting	Description
0	Control mode, regenerative brake option selection	□ <u>0</u> □2	— Speed control mode — Regenerative brake option is not used.
1	Function selection 1		—Input filter 3.555ms (initial value) —Electromagnetic brake interlock (MBR) is used.
2	Auto tuning	□1□5 	— Middle response (initial value) is selected. — Auto tuning mode 1 is selected.
8	Internal speed command 1	1000	Set 1000r/min.
9	Internal speed command 2	1500	Set 1500r/min.
10	Internal speed command 3	2000	Set 2000r/min.
11	Acceleration time constant	1000	Set 1000ms.
12	Deceleration time constant	500	Set 500ms.
13	S-pattern acceleration/deceleration time constant	0	Not used

After setting the above parameters, switch power off once. Then switch power on again to make the set parameter values valid.

(4) Servo-on

Switch the servo-on in the following procedure:

- 1) Switch on main circuit/control circuit power supply.
- 2) Switch on the servo-on (SON).

When placed in the servo-on status, the servo amplifier is ready to operate and the servo motor is locked.

(5) Start

Using speed selection 1 (SP1) and speed selection 2 (SP2), choose the servo motor speed. Turn on forward rotation start (ST1) to run the motor in the forward rotation (CCW) direction or reverse rotation start (ST2) to run it in the reverse rotation (CW) direction. At first, set a low speed and check the rotation direction, etc. If it does not run in the intended direction, check the input signal.

On the status display, check the speed, load factor, etc. of the servo motor.

When machine operation check is over, check automatic operation with the host controller or the like. This servo amplifier has a real-time auto tuning function under model adaptive control. Performing operation automatically adjusts gains. The optimum tuning results are provided by setting the response level appropriate for the machine in parameter No. 2. (Refer to chapter 7)

(6) Stop

In any of the following statuses, the servo amplifier interrupts and stops the operation of the servo motor:

Refer to Section 3.9, (2) for the servo motor equipped with electromagnetic brake. Note that simultaneous ON or simultaneous OFF of stroke end (LSP, LSN) OFF and forward rotation start (ST1) or reverse rotation start (ST2) has the same stop pattern as described below.

(a) Servo-on (SON) OFF

The base circuit is shut off and the servo motor coasts.

(b) Alarm occurrence

When an alarm occurs, the base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden stop.

(c) Emergency stop (EMG) OFF

The base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden stop. Alarm AL.E6 occurs.

(d) Stroke end (LSP/LSN) OFF

The servo motor is brought to a sudden stop and servo-locked. The motor may be run in the opposite direction.

(e) Simultaneous ON or simultaneous OFF of forward rotation start (ST1) and reverse rotation start (ST2)

The servo motor is decelerated to a stop.

POINT

 A sudden stop indicates deceleration to a stop at the deceleration time constant of zero.

4.2.4 Torque control mode

(1) Power on

- 1) Switch off the servo-on (SON).
- 2) When main circuit power/control circuit power is switched on, the display shows "U (torque command voltage)", and in two second later, shows data.

(2) Test operation

Using jog operation in the test operation mode, operate at the lowest speed to confirm that the servo motor operates. (Refer to Section 6.8.2.)

(3) Parameter setting

Set the parameters according to the structure and specifications of the machine. Refer to Chapter 5 for the parameter definitions and to Sections 6.5 for the setting method.

Parameter No.	Name	Setting	Description
0	Control mode, regenerative brake option selection		— Torque control mode — Regenerative brake option is not used.
1	Function selection 1		Input filter 3.555ms (initial value) Electromagnetic brake interlock (MBR) is not used.
8	Internal speed limit 1	1000	Set 1000r/min.
9	Internal speed limit 2	1500	Set 1500r/min.
10	Internal speed limit 3	2000	Set 2000r/min.
11	Acceleration time constant	1000	Set 1000ms.
12	Deceleration time constant	500	Set 500ms.
13	S-pattern acceleration/deceleration time constant	0	Not used
14	Torque command time constant	2000	Set 2000ms
28	Internal torque limit 1	50	Controlled to 50% output

After setting the above parameters, switch power off once. Then switch power on again to make the set parameter values valid.

(4) Servo-on

Switch the servo-on in the following procedure:

- 1) Switch on main circuit/control circuit power supply.
- 2) Switch on the servo-on (SON).

When placed in the servo-on status, the servo amplifier is ready to operate.

(5) Start

Using speed selection 1 (SP1) and speed selection 2 (SP2), choose the servo motor speed. Turn on forward rotation select (DI4) to run the motor in the forward rotation (CCW) direction or reverse rotation select (DI3) to run it in the reverse rotation (CW) direction, generating torque. At first, set a low speed and check the rotation direction, etc. If it does not run in the intended direction, check the input signal.

On the status display, check the speed, load factor, etc. of the servo motor.

When machine operation check is over, check automatic operation with the host controller or the like.

(6) Stop

In any of the following statuses, the servo amplifier interrupts and stops the operation of the servo motor:

Refer to Section 3.9, (2) for the servo motor equipped with electromagnetic brake.

(a) Servo-on (SON) OFF

The base circuit is shut off and the servo motor coasts.

(b) Alarm occurrence

When an alarm occurs, the base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden stop.

- (c) Emergency stop (EMG) OFF
 - The base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden stop. Alarm AL.E6 occurs.
- (d) Simultaneous ON or simultaneous OFF of forward rotation selection (RS1) and reverse rotation selection (RS2) $\,$

The servo motor coasts.

POINT

 A sudden stop indicates deceleration to a stop at the deceleration time constant of zero.

4.3 Multidrop communication

You can use the RS-422 communication function (parameter No.16) to operate two or more servo amplifiers on the same bus. In this case, set station numbers to the servo amplifiers to recognize the servo amplifier to which the current data is being sent. Use parameter No. 15 to set the station numbers.

Always set one station number to one servo amplifier. Normal communication cannot be made if the same station number is set to two or more servo amplifiers.

For details, refer to Chapter 14.

5. PARAMETERS

ACAUTION

• Never adjust or change the parameter values extremely as it will make operation instable.

5.1 Parameter list

5.1.1 Parameter write inhibit

POINT

• After setting the parameter No. 19 value, switch power off, then on to make that setting valid.

In the MR-J2S-A servo amplifier, its parameters are classified into the basic parameters (No. 0 to 19), expansion parameters 1 (No. 20 to 49) and expansion parameters 2 (No.50 to 84) according to their safety aspects and frequencies of use. In the factory setting condition, the customer can change the basic parameter values but cannot change the expansion parameter values. When fine adjustment, e.g. gain adjustment, is required, change the parameter No. 19 setting to make the expansion parameters write-enabled.

The following table indicates the parameters which are enabled for reference and write by the setting of parameter No. 19. Operation can be performed for the parameters marked \bigcirc .

Parameter No. 19 setting	Operation	Basic parameters No. 0 to No. 19	Expansion parameters 1 No. 20 to No. 49	Expansion parameters 2 No. 50 to No. 84
0000	Reference	0		
(initial value)	Write	0		
0004	Reference	No. 19 only		
000A	Write	No. 19 only		
0000	Reference	0	0	
000B	Write	0		
0000	Reference	0	0	
000C	Write	0	0	
0001	Reference	0	0	0
000E	Write	0	0	0
100D	Reference	0		
100B	Write	No. 19 only		
1000	Reference	0	0	
100C	Write	No. 19 only		
100E	Reference	0	0	0
100E	Write	No. 19 only		

5.1.2 Lists

POINT

• For any parameter whose symbol is preceded by *, set the parameter value and switch power off once, then switch it on again to make that parameter setting valid.

The symbols in the control mode column of the table indicate the following modes:

 $\begin{array}{l} P: Position \ control \ mode \\ S: Speed \ control \ mode \end{array}$

T: Torque control mode

(1) Item list

	No.	Symbol	Name	Control mode	Initial value	Unit	Customer setting
	0	*STY	Control mode ,regenerative brake option selection	P·S·T	0000		
	1	*OP1	Function selection 1	P·S·T	0002		
	2	ATU	Auto tuning	P•S	7kW or less: 0105 11kW or more:0102		
	3	CMX	Electronic gear numerator	P	1		
	4	CDV	Electronic gear denominator	P	1		
	5	INP	In-position range	P	100	pulse	
ş	6	PG1	Position loop gain 1	P	7kW or less: 35 11kW or more:19	rad/s	
Basic parameters	7	PST	Position command acceleration/deceleration time constant (Smoothing)	P	3	ms	
par	8	SC1	Internal speed command 1	S	100	r/min	
sic	0	501	Internal speed limit 1	Т	100	r/min	
Ba	9	SC2	Internal speed command 2	S	500	r/min	
	ð	502	Internal speed limit 2	Т	500	r/min	
	10	SC3	Internal speed command 3	S	1000	r/min	
	10		Internal speed limit 3	T	1000	r/min	
	11	STA	Acceleration time constant	S•T	0	ms	
	12	STB	Deceleration time constant	S•T	0	ms	
	13	STC	S-pattern acceleration/deceleration time constant	S•T	0	ms	
	14	TQC	Torque command time constant	T	0	ms	
	15	*SNO	Station number setting	P·S·T	0	station	
	16	*BPS	Serial communication function selection, alarm history clear	P·S·T	0000		
	17	MOD	Analog monitor output	P•S•T	0100		
	18	*DMD	Status display selection	P·S·T	0000		
	19	*BLK	Parameter write inhibit	PST	0000		

5. PARAMETERS

	No.	Symbol	Name	Control mode	Initial value	Unit	Customer setting
	20	*OP2	Function selection 2	P·S	0000		
	21	*OP3	Function selection 3 (Command pulse selection)	P	0000		
	22	*OP4	Function selection 4	P·S·T	0000		
•	23	FFC	Feed forward gain	P	0	%	
•	24	ZSP	Zero speed	P·S·T	50	r/min	
			Analog speed command maximum speed	S	(Note1)0	(r/min)	
	25	VCM	Analog speed limit maximum speed	Т	(Note1)0	(r/min)	
	26	TLC	Analog torque command maximum output	Т	100	%	
	27	*ENR	Encoder output pulses	P·S·T	4000	pulse /rev	
	28	TL1	Internal torque limit 1	P·S·T	100	%	
	90	VCO	Analog speed command offset	S	(Note2)	mV	
	29	VCO	Analog speed limit offset	T	(Note2)	mV	
	20	TLO	Analog torque command offset	T	0	mV	
	30	ILU	Analog torque limit offset	S	0	mV	
	31	MO1	Analog monitor 1 offset	P·S·T	0	mV	
	32	MO2	Analog monitor 2 offset	$P \cdot S \cdot T$	0	mV	
	33	MBR	Electromagnetic brake sequence output	$P \cdot S \cdot T$	100	ms	
1	34	GD2	Ratio of load inertia moment to servo motor inertia moment	P•S	70	0.1 times	
Expansion parameters 1	35	PG2	Position loop gain 2	Р	7kW or less: 35 11kW or more:19	rad/s	
Expansion	36	VG1	Speed loop gain 1	P•S	7kW or less:177 11kW or more:96	rad/s	
	37	VG2	Speed loop gain 2	P•S	7kW or less:817 11kW or more:45	rad/s	
	38	VIC	Speed integral compensation	P•S	7kW or less: 48 11kW or more:91	ms	
	39	VDC	Speed differential compensation	P·S	980		
	40		For manufacturer setting		0		
	41	*DIA	Input signal automatic ON selection	P·S·T	0000		
	42	*DI1	Input signal selection 1	P·S·T	0003		
	43	*DI2	Input signal selection 2 (CN1B-5)	P·S·T	0111		
	44	*DI3	Input signal selection 3 (CN1B-14)	PST	0222		
	45	*DI4	Input signal selection 4 (CN1A-8)	PST	0665		
	46	*DI5	Input signal selection 5 (CN1B-7)	P·S·T	0770		
	47	*DI6	Input signal selection 6 (CN1B-8)	P·S·T	0883		
	48	*DI7	Input signal selection 7 (CN1B-9)	P·S·T	0994		
	49	*DO1	Output signal selection 1	PST	0000		

For notes, refer to next page.

	No.	Symbol	Name	Control mode	Initial value	Unit	Customer setting
	50	/	For manufacturer setting		0000		
	51	*OP6	Function selection 6	PST	0000		
	52	/	For manufacturer setting		0000		
	53	*OP8	Function selection 8	PST	0000		
	54	*OP9	Function selection 9	PST	0000		
	55	*OPA	Function selection A	P	0000		
	56	SIC	Serial communication time-out selection	PST	0	s	
	57		For manufacturer setting	10			
	58	NH1	Machine resonance suppression filter 1	PST	0000		
	59	NH2	Machine resonance suppression filter 2	PST	0000		
	60	LPF	Low-pass filter, adaptive vibration suppression control	PST	0000		
	61	GD2B	Ratio of load inertia moment to Servo motor inertia moment 2	P•S	70	0.1 times	
	62	PG2B	Position control gain 2 changing ratio	P	100	%	
	63	VG2B	Speed control gain 2 changing ratio	P•S	100	%	
	64	VICB	Speed integral compensation changing ratio	P•S	100	%	
2	65	*CDP	Gain changing selection	P•S	0000		
ers	66	CDS	Gain changing condition	P•S	10	(Note3)	
meı	67	CDT	Gain changing time constant	P•S	1	ms	
Expansion parameters	68	/	For manufacturer setting		0		
d u	69	CMX2	Command pulse multiplying factor numerator 2	P	1		
nsic	70	CMX3	Command pulse multiplying factor numerator 3	P	1		
кра	71	CMX4	Command pulse multiplying factor numerator 4	P	1		
囝	70	SC4	Internal speed command 4	S	900	/	
	72	SC4	Internal speed limit 4	T	200	r/min	
	79	SC5	Internal speed command 5	S	200	/	
	73	SC3	Internal speed limit 5	T	300	r/min	
	74	SC6	Internal speed command 6	S	500	r/min	
	74	500	Internal speed limit 6	T	500	17111111	
	75	SC7	Internal speed command 7	S	800	r/min	
	75	507	Internal speed limit 7	T	800	17111111	
	76	TL2	Internal torque limit 2	PST	100	%	
	77	\	For manufacturer setting	\land	100	Λ	\
	78	\		\	10000	\	\
	79			\	10	\	
	80	\			10	\	
	81	\		\	100	\	\
	82	\		\	100	\	\
	83	\		\	100	\	\
	84	\		\	0000	\	\

Note 1. The setting of "0" provides the rated servo motor speed.

^{2.} Depends on the servo amplifier.

^{3.} Depends on the parameter No. 65 setting.

(2) Details list

Class No	Symbol	Name and function	Initial value	Unit	Setting range	Control mode
Basic parameters	*STY	Control mode, regenerative brake option selection Used to select the control mode and regenerative brake option. Select the control mode. 0:Position 1:Position and speed 2:Speed 3:Speed and torque 4:Torque 5:Torque and position Selection of regenerative brake option or regenerative brake option is not used with 7kW or less servo amplifier (The built-in regenerative brake resistors or regenerative brake option is used with 11kW or more servo amplifier 01:FR-RC, FR-BU, FR-CV 02:MR-RB032 03:MR-RB12 04:MR-RB32 05:MR-RB30 06:MR-RB31 09:MR-RB31 09:MR-RB31 09:MR-RB51 0E: When regenerative brake resistors supplied to 11kW or more are cooled by fans to increase capability The MR-RB65, 66 and 67 are regenerative brake options that have encased the GRZG400-2Ω, GRZG400-1Ω and GRZG400-1Ω and GRZG400-8Ω (GRZG400-0-8Ω (Supplied regenerative brake options, make the same parameter setting as when using the GRZG400-2Ω, GRZG400-1Ω or GRZG400-0-8Ω (supplied regenerative brake option is used with 11kW or more servo amplifier).	0000		Refer to Name and function column.	P·S·T

Class	No.	Symbol	Name and function	Initial value	Unit	Setting range	Control mode
Basic parameters	1	*OP1	Function selection 1 Used to select the input signal filter, pin CN1B-19 function and absolute position detection system. Input signal filter If external input signal causes chattering due to noise, etc., input filter is used to suppress it. 0:None 1:1.777[ms] 2:3.555[ms] 3:5.333[ms] CN1B-pin 19's function selection 0:Zero Speed detection (ZSP) 1:Electromagnetic brake interlock (MBR) CN1B-pin 18's function selection 0: Alarm (ALM) 1: Dynamic brake interlock (DB) When using the external dynamic brake with 11kW or more, make dynamic brake interlock (DB) valid. Selection of absolute position detection system (Refer to Chapter 15) 0: Used in incremental system 1: Used in absolute position detection system	0002		Refer to Name and function.	P·S·T

Class	No.	Symbol	Name and function	Initial value	Unit	Setting range	Control mode
Basic parameters	2	ATU	Used to selection the response level, etc. for execution of auto tuning. Refer to Chapter 7. O O O	7kW or less: 0105 11kW or more: 0102		Refer to Name and function column.	P·S
	3	CMX	Electronic gear numerator Used to set the electronic gear numerator value. For the setting, refer to Section 5.2.1. Setting "0" automatically sets the resolution of the servo motor connected. For the HC-MFS series, 131072 pulses are set for example.	1		0 1 to 65535	P
	4	CDV	Electronic gear denominator Used to set the electronic gear denominator value. For the setting, refer to Section 5.2.1.	1		1 to 65535	P

Class	No.	Symbol	Name and function	Initial value	Unit	Setting range	Control mode
	5	INP	In-position range Used to set the in-position (INP) output range in the command pulse increments prior to electronic gear calculation. For example, when you want to set $100~\mu m$ when the ballscrew is directly coupled, the lead is $10mm$, the feedback pulse count is 131072 pulses/rev, and the electronic gear numerator (CMX)/electronic gear denominator (CDV) is $16384/125$ (setting in units of $10~\mu m$ per pulse), set "10" as indicated by the following expression. $\frac{100\times10^{-6}}{10\times10^{-3}}\times131072[\text{pulse/rev}]\times\frac{125}{16384}=10$	100	pulse	0 to 10000	P
	6	PG1	Position loop gain 1 Used to set the gain of position loop. Increase the gain to improve trackability in response to the position command. When auto turning mode 1,2 is selected, the result of auto turning is automatically used.	7kW or less: 35 11kW or more: 19	red/s	4 to 2000	Р
Basic parameters	7	PST	Position command acceleration/deceleration time constant (position smoothing) Used to set the time constant of a low pass filter in response to the position command. You can use parameter No. 55 to choose the primary delay or linear acceleration/deceleration control system. When you choose linear acceleration/deceleration, the setting range is 0 to 10ms. Setting of longer than 10ms is recognized as 10ms. POINT When you have chosen linear acceleration/deceleration, do not select control selection (parameter No. 0) and restart after instantaneous power failure (parameter No. 20). Doing so will cause the servo motor to make a sudden stop at the time of position control switching or restart. Example: When a command is given from a synchronizing detector, synchronous operation can be started smoothly if started during line operation. Servo motor Servo amplifier With time constant setting With time constant setting With time constant setting Servo motor speed ON OFF	3	ms	0 to 20000	P
	8	SC1	Internal speed command 1 Used to set speed 1 of internal speed commands.	100	r/min	0 to instan- taneous	S
			Internal speed limit 1 Used to set speed 1 of internal speed limits.			permi- ssible speed	Т

Class	No.	Symbol	Name and function	Initial value	Unit	Setting range	Control mode
	9	SC2	Internal speed command 2 Used to set speed 2 of internal speed commands.	500	r/min	0 to instan-	S
			Internal speed limit 2 Used to set speed 2 of internal speed limits.			taneous permi- ssible speed	Т
	10	SC3	Internal speed command 3 Used to set speed 3 of internal speed commands. Internal speed limit 3 Used to set speed 3 of internal speed limit 3	1000	r/min	0 to instan- taneous permi-	S T
			Used to set speed 3 of internal speed limits.			ssible speed	
	11	STA	Acceleration time constant Used to set the acceleration time required to reach the rated speed from 0r/min in response to the analog speed command and internal speed commands 1 to 7. If the preset speed command is lower than the rated speed, acceleration/deceleration time Rated speed Zero Parameter No.11 setting No.12 setting For example for the servo motor of 3000r/min rated speed, set 3000 (3s) to increase speed from 0r/min to 1000r/min in 1 second.	0	ms	0 to 20000	S·T
Basic parameters	12	STB	Deceleration time constant Used to set the deceleration time required to reach 0r/min from the rated speed in response to the analog speed command and internal speed commands 1 to 7.	0			
Basic ps	13	STC	S-pattern acceleration/deceleration time constant Used to smooth start/stop of the servo motor. Set the time of the arc part for S-pattern acceleration/deceleration. Speed command Or/min STC STC STB STC STA: Acceleration time constant (parameter No.11) STB: Deceleration time constant (parameter No.12) STC: S-pattern acceleration/deceleration time constant (parameter No.13) Long setting of STA (acceleration time constant) or STB (deceleration time constant) may produce an error in the time of the arc part for the setting of the S-pattern acceleration/deceleration time constant. The upper limit value of the actual arc part time is limited by 20000000 STA for acceleration or by 20000000 STA for acceleration or by 20000000 STB for deceleration. (Example) At the setting of STA=20000, STB=5000 and STC=200, the actual arc part times are as follows: During acceleration: 100[ms] Limited to 100[ms] since 2000000 = 100[ms] < 200[ms]. During deceleration: 200[ms] During deceleration: 200[ms]	0	ms	0 to 1000	S·T

Class	No.	Symbol	Name and function	Initial value	Unit	Setting range	Control mode
	14	TQC	Torque command time constant Used to set the constant of a low pass filter in response to the torque command. Torque Torque command After filtered TQC: Torque command time constant	0	ms	0 to 20000	Т
ers	15	*SNO	Station number setting Used to specify the station number for serial communication. Always set one station to one axis of servo amplifier. If one station number is set to two or more stations, normal communication cannot be made.	0	sta- tion	0 to 31	P·S·T
Basic parameters	16	*BPS	Serial communication function selection, alarm history clear Used to select the serial communication baudrate, select various communication conditions, and clear the alarm history. Serial baudrate selection 0: 9600 [bps] 1: 19200[bps] 2: 38400[bps] 3: 57600[bps] Alarm history clear 0: Invalid 1: Valid When alarm history clear is made valid, the alarm history is cleared at next power-on. After the alarm history is cleared, the setting is automatically made invalid (reset to 0). Serial communication standard selection 0: RS-232C used 1: RS-422 used Serial communication response delay time 0: Invalid 1: Valid, reply sent after delay time of 800µs or more	0000		Refer to Name and function column.	P·S·T

Class	No.	Symbol			Name and function	Initial value	Unit	Setting range	Control mode
Basic parameters	17	MOD	analog monito (Refer to Sect O Sect Sect	Setting 0 1 2 3 4 5 6 7 8 9 A B Hote. 8V	ne signal provided to the analog monitor (MO1) • 2) output.	0100		Refer to Name and function column.	P·S·T

Class	No.	Symbol			Name and fun	ction		Initial value	Unit	Setting range	Control mode
	19	*BLK	Used to se		ence and write a			0000		Refer to Name and	P·S·T
			Set value	Operation	Basic parameters No. 0 to No. 19	Expansion parameters 1 No. 20 to No. 49	Expansion parameters 2 No. 50 to No. 84			function column.	
			0000	Reference	0		10 110.01				
, n			(Initial value)	Write	0						
neter			000A	Reference Write	No. 19 only No. 19 only						
Basic parameters			000B	Reference	0						
asic]			0000	Write Reference	0						
Ř			000C	Write	0	0					
			000E	Reference Write	0	00	0				
			100B	Reference	0						
			1000	Write Reference	No. 19 only	-					
			100C	Write	No. 19 only						
			100E	Reference Write	No. 19 only	$ \bigcirc $	\circ				
Expansion parameters 1	20	*OP2	servo locl	elect restart af x at a stop i on control. Slight vit Made v "0400"	Restart after failure If the power returned to undervolta reduction of voltage in the servor by merely without result (AL.1 1: Valid op-time servo loo The shaft can be still at a stop in 0: Valid 1: Invalid oration suppressivalid when auto in parameter N	instantaneous per supply voltage normal after arge status cause of the input power the speed contraction of the speed contraction of the speed contraction of the speed contraction of the speed contraction control tuning selection of tuning selection of tuning selection of the speed contraction of the speed contraction control tuning selection of the speed contraction of the speed contraction control tuning selection of the speed contraction of the speed contraction control tuning selection c	slight vibration cower e has e do by the er supply ol mode, started tart signal n. e alarm to remain rol mode.	0000		Refer to Name and function column.	S
				0: I	o suppress vibra nvalid /alid	апон ата ѕтор.					

Class	No.	Symbol	Name and function	Initial value	Unit	Setting range	Control mode
	21	*OP3	Function selection 3 (Command pulse selection) Used to select the input form of the pulse train input signal. (Refer to Section 3.4.1.) Command pulse train input form 0: Forward/reverse rotation pulse train 1: Signed pulse train 2: A/B phase pulse train Pulse train logic selection 0: Positive logic 1: Negative logic	0000		Refer to Name and function column.	Р
Expansion parameters 1	22	*OP4	Function selection 4 Used to select stop processing at forward rotation stroke end (reverse rotation stroke end (LSN) off and choose VC/VLA variance. O			Refer to Name and function column.	P·S·T

Class	No.	Symbol	Name and function	Initial	Unit	Setting	Control
Oldoo		,		value		range	mode P
	23	FFC	Feed forward gain Set the feed forward gain. When the setting is 100%, the droop pulses during operation at constant speed are nearly zero. However, sudden acceleration/deceleration will increase the overshoot. As a guideline, when the feed forward gain setting is 100%, set 1s or more as the acceleration/deceleration time constant up to the rated speed.	0	%	0 to 100	P
	24	ZSP	Zero speed Used to set the output range of the zero speed (ZSP).	50	r/min	0 to 10000	PST
	25	VCM	Analog speed command maximum speed Used to set the speed at the maximum input voltage (10V) of the analog speed command (VC). Set "0" to select the rated speed of the servo motor connected.	0	r/min	0 1 to 50000	S
			Analog speed limit maximum speed Used to set the speed at the maximum input voltage (10V) of the analog speed limit (VLA). Set "0" to select the rated speed of the servo motor connected.	0	r/min	0 1 to 50000	Т
	26	TLC	Analog torque command maximum output Used to set the output torque at the analog torque command voltage (TC = $\pm 8V$) of $\pm 8V$ on the assumption that the maximum torque is $\pm 100[\%]$. For example, set 50 to output (maximum torque $\pm 50/100$) at the TC of $\pm 8V$.	100	%	0 to 1000	Т
Expansion parameters 1	27	*ENR	Encoder output pulses Used to set the encoder pulses (A-phase, B-phase) output by the servo amplifier. Set the value 4 times greater than the A-phase or B-phase pulses. You can use parameter No. 54 to choose the output pulse setting or output division ratio setting. The number of A/B-phase pulses actually output is 1/4 times greater than the preset number of pulses. The maximum output frequency is 1.3Mpps (after multiplication by 4). Use this parameter within this range. • For output pulse designation Set "0□□□" (initial value) in parameter No. 54. Set the number of pulses per servo motor revolution. Output pulse = set value [pulses/rev] At the setting of 5600, for example, the actually output A/B-phase pulses are as indicated below: A•B-phase output pulses = \frac{5600}{4} = 1400[pulse] • For output division ratio setting Set "1□□□" in parameter No. 54. The number of pulses per servo motor revolution is divided by the set value. Output pulse = \frac{Resolution per servo motor revolution}{Set value} [pulses/rev] At the setting of 8, for example, the actually output A/B-phase pulses are as indicated below:	却却	却却却	- 刧Ć 刧dČ Ć刧Ć 刧 刧	Ć15Ć 15
	28	TL1	Internal torque limit 1 Set this parameter to limit servo motor torque on the assumption that the maximum torque is 100[%]. When 0 is set, torque is not produced. (Note) TL O Internal torque limit 1 (Parameter No. 28) 1 Analog torque limit < internal torque limit 1 : Analog torque limit Analog torque limit > internal torque limit 1 : Internal torque limit 1 Note. 0: off 1: on When torque is output in analog monitor output, this set value is the maximum output voltage (+8V). (Refer to Section 3.4.1, (5))	100	%	0 to 100	P·S·T

Class	No.	Symbol	Name and function	Initial value	Unit	Setting range	Control mode
	29	VCO	Analog speed command offset Used to set the offset voltage of the analog speed command (VC). For example, if CCW rotation is provided by switching on forward rotation start (ST1) with 0V applied to VC, set a negative value. When automatic VC offset is used, the automatically offset value is set to this parameter. (Refer to Section6.3.) The initial value is the value provided by the automatic VC offset function before shipment at the VC-LG voltage of 0V.	Depends on servo amplifier	mV	-999 to 999	S
			Analog speed limit offset Used to set the offset voltage of the analog speed limit (VLA). For example, if CCW rotation is provided by switching on forward rotation selection (RS1) with 0V applied to VLA, set a negative value. When automatic VC offset is used, the automatically offset value is set to this parameter. (Refer to Section 6.3.) The initial value is the value provided by the automatic VC offset function before shipment at the VLA-LG voltage of 0V.				Т
	30	TLO	Analog torque command offset Used to set the offset voltage of the analog torque command (TC). Analog torque limit offset Used to set the offset voltage of the analog torque limit (TLA).	0	mV	-999 to 999	S
	31	MO1 MO2	Analog monitor 1 offset Used to set the offset voltage of the analog monitor (MO1). Analog monitor 2 offset	0	mV	-999 to 999 -999	P·S·T
s 1	33	MBR	Used to set the offset voltage of the analog monitor (MO2). Electromagnetic brake sequence output Used to set the delay time (Tb) between electronic brake interlock	100	mV	to 999 0 to	P S T
Expansion parameters 1	34	GD2	(MBR) and the base drive circuit is shut-off. Ratio of load inertia moment to servo motor inertia moment Used to set the ratio of the load inertia moment to the servo motor shaft inertia moment. When auto tuning mode 1 and interpolation mode is selected, the result of auto tuning is automatically used. (Refer to section 7.1.1) In this case, it varies between 0 and 1000.	70	0.1 times	1000 0 to 3000	P•S
H	35	PG2	Position loop gain 2 Used to set the gain of the position loop. Set this parameter to increase the position response to level load disturbance. Higher setting increases the response level but is liable to generate vibration and/or noise. When auto tuning mode 1,2 and interpolation mode is selected, the result of auto tuning is automatically used.	7kW or less: 35 11kW or more: 19	rad/s	1 to 1000	P
	36	VG1	Speed loop gain 1 Normally this parameter setting need not be changed. Higher setting increases the response level but is liable to generate vibration and/or noise. When auto tuning mode 1 • 2, manual mode and interpolation mode is selected, the result of auto tuning is automatically used.	7kW or less: 177 11kW or more: 96	rad/s	20 to 8000	P•S
	37	VG2	Speed loop gain 2 Set this parameter when vibration occurs on machines of low rigidity or large backlash. Higher setting increases the response level but is liable to generate vibration and/or noise. When auto tuning mode 1 • 2 and interpolation mode is selected, the result of auto tuning is automatically used.	7kW or less: 817 11kW or more: 45	rad/s	20 to 20000	P•S
	38	VIC	Speed integral compensation Used to set the integral time constant of the speed loop. Lower setting increases the response level but is liable to generate vibration and/or noise. When auto tuning mode 1 • 2 and interpolation mode is selected, the result of auto tuning is automatically used.	7kW or less: 48 11kW or more: 91	ms	1 to 1000	P•S

Class	No.	Symbol	Name and function	Initial value	Unit	Setting range	Control mode
	39	VDC	Speed differential compensation	980		0	P·S
			Used to set the differential compensation.			to	
			Made valid when the proportion control (PC) is switched on.			1000	
	40		For manufacturer setting	0			
		1771	Do not change this value by any means.				
	41	*DIA	Input signal automatic ON selection Used to set automatic Servo-on (SON) • forward rotation stroke end	0000		Refer to Name	PST
			(LSP) reveres rotation stroke end (LSN).		\	and	
			0		\	function	
						column.	
			Servo-on (SON) input selection 0: Switched on/off by external input.				
			1: Switched on automatically in servo				
			amplifier.				
			(No need of external wiring)				PS
			Forward rotation stroke end				
			(LSP) input selection 0: Switched on/off by external input.				
			1: Switched on automatically in servo				
			amplifier. (No need of external wiring)				
			—Reverse rotation stroke end (LSN) input selection		\		
rs 1			0: Switched on/off by external input.				
rete			Switched on automatically in servo amplifier.		\		
aran			(No need of external wiring)				
Expansion parameters 1	42	*DI1	Input signal selection 1	0003		Refer to	
msic			Used to assign the control mode changing signal input pins and to set			Name	
3xps			the clear (CR).		\	and	
						function	\
			Control change (LOP) in-		$ \rangle$	column.	P/S
			put pin assignment Used to set the control mode				S/T T/P
			change signal input connector				1/1
			pins. Note that this parameter is				
			made valid when parameter No. 0 is set to select the position/spe-				
			ed, speed/torque or torque/posi-				
			tion change mode.				
			Set value Connector pin No.				
			0 CN1B-5				
			1 CN1B-14				
			2 CN1A-8				
			3 CN1B-7				
			4 CN1B-8				
			5 CN1B-9				
			Clear (CR) selection				PST
			0: Droop pulses are cleared on the				
			leading edge. 1: While on, droop pulses are always cleared.				
			1. Willie OII, GIOOP Palses are always cleared.				

Class	No.	Symbol		Name an	d function		Initial	Unit	Setting	Control
		-					value		range	mode
	43	*DI2	Input signal selecti			40:	0111		Refer to	P·S·T
			the control change			0.42 is set to assign			Name and	
			Allows any input			n 5			function	
						fer according to the			column.	
			control mode.	BB	gg	g				
			0							
				Position control mode	Input signals o	f				
			│	speed control	CN1B-pin 5	•				
				node	selected.					
				control mode	J					
					n each control r	node are indicated				
			below by their syn Setting of any oth		invalid					
			Setting of any our	1		la.				
			Set value	P	Note) Control mod					
			-	P	S	T				
			0	CON	SON	CON				
			1	SON		SON				
			2	RES	RES	RES				
's 1			3	PC	PC					
Expansion parameters 1			4	TL	TL	CIP				
ram			5	CR	CR	CR				
ı pa			6		SP1	SP1				
ısior			7		SP2	SP2				
tpar			8		ST1	RS2				
E			9		ST2	RS1				
			A		SP3	SP3				
			В	CM1						
			С	CM2						
			D	TL1	TL1	TL1				
			E	CDP	CDP	CDP				
			Note. P: Position of							
			S: Speed co T: Torque co							
	44	*DI3	Input signal selecti				0222		Refer to	P·S·T
	11	D10	Allows any input		gned to CN1B-pi	n 14.	0222	\	Name	1 0 1
						e same as in input		\	and	
			signal selection 2	(parameter No.	43).			\	function	
			0					\	column.	
			 	_ Position	1					
				control mode	Input signals of	:		\		
				peed control	CN1B-pin 14			\		
				ode	selected.			\		
			-	control mode	J	N 42		\		
			This parameter assign the control			No. 42 is set to		\		
			assign the control	change (LOP) to	ONID-pin 14.			<u> </u>		

Class	No.	Symbol	Name and function	Initial value	Unit	Setting range	Control mode
	45	*DI4	Input signal selection 4 (CN1A-8) Allows any input signal to be assigned to CN1A-pin 8. The assignable signals and setting method are the same as in input signal selection 2 (parameter No. 43). O Position control mode Speed control mode Torque control mode This parameter is unavailable when parameter No. 42 is set to	0665		Refer to Name and function column.	P·S·T
	46	*DI5	assign the control change (LOP) to CN1 A-pin 8. Input signal selection 5 (CN1B-7) Allows any input signal to be assigned to CN1B-pin 7. The assignable signals and setting method are the same as in input signal selection 2 (parameter No. 43). O Position control mode Speed control mode Torque control mode This parameter is unavailable when parameter No. 42 is set to assign the control change (LOP) to CN1 B-pin 7.	0770		Refer to Name and function column.	P·S·T
Expansion parameters 1	47	*DI6	Input signal selection 6 (CN1B-8) Allows any input signal to be assigned to CN1B-pin 8. The assignable signals and setting method are the same as in input signal selection 2 (parameter No. 43). O Position control mode Speed control mode Torque control mode This parameter is unavailable when parameter No. 42 is set to assign the control change (LOP) to CN1B-pin 8. When "Used in absolute position detection system" is selected in parameter No. 1, CN1B-pin 8 is in the ABS transfer mode (ABSM). (Refer to Section 15.5.)	0883		Refer to Name and function column.	P·S·T
	48	*DI7	Input signal selection 7 (CN1B-9) Allows any input signal to be assigned to CN1B-pin 9. The assignable signals and setting method are the same as in input signal selection 2 (parameter No. 43). O Position Control mode Speed control mode Torque control mode This parameter is unavailable when parameter No. 42 is set to assign the control change (LOP) to CN1B-pin 9. When "Used in absolute position detection system" is selected in parameter No. 1, CN1B-pin 9 is in the ABS request mode (ABSR). (Refer to Section 15.5.)	0994		Refer to Name and function column.	P·S·T

Class	No.	Symbol	Name and function	Initial value	Unit	Setting range	Control mode
Expansion parameters 1	No. 49	*DO1	Output signal selection 1 Used to select the connector pins to output the alarm code, warning (WNG) and battery warning (BWNG). Setting of alarm code output The alarm code output and the following functions are exclusive, so the simultaneous use is not possible. If set, the parameter error alarm (AL.37) occurs. Absolute position detection system Set value CNIB-19 CNIA-18 CNIA-19 O ZSP INP or SA RD 1 Alarm code is output at alarm occurrence. (Note) Alarm code CNIB CNIA CNIA CNIA pin 19 pin 18 pin 19 AL.12 Memory error 1 AL.13 Clock error AL.19 Memory error 2 AL.19 Memory error 2 AL.19 Memory error 3 AL.37 Parameter error AL.88 Serial communication timeout error AL.88 Serial communication error AL.88 Serial communication error AL.88 Serial communication error AL.80 Overload 1 AL.46 Servo motor overheat AL.46 Servo motor overheat AL.46 Servo motor overheat AL.41 Overload 2 1 O AL.24 Main circuit AL.30 Overolad 1 AL.31 Overspeed 1 O AL.24 Main circuit AL.31 Overspeed 1 O AL.24 Main circuit AL.33 Overspeed 1 O AL.24 Main circuit AL.35 Command pulse frequency error AL.52 Error excessive AL.14 Motor combination error AL.20 Encoder error 2 AL.20 Encoder error 2 AL.25 Absolute position erase	Initial value 0000	Unit	Setting range Refer to Name and function column.	Control mode P·S·T
Ex			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Class	No.	Symbol	Name and function	Initial value	Unit	Setting range	Control mode
	50		For manufacturer setting	0000		.3.190	
	51	*OP6	Do not change this value by any means. Function selection 6 Used to select the operation to be performed when the reset (RES) switches on. This parameter is invalid (base circuit is shut off) in the absolute position detection system.	0000		Refer to Name and function column.	P·S·T
			Operation to be performed when the reset (RES) switches on 0: Base circuit shut off 1: Base circuit not shut off				
	52		For manufacturer setting Do not change this value by any means.	0000			
Expansion parameters 2	53	*OP8	Function selection 8 Used to select the protocol of serial communication. O O O Protocol checksum selection 0: Yes (checksum added) 1: No (checksum not added) Protocol checksum selection 0: With station numbers 1: No station numbers	0000		Refer to Name and function column.	P·S·T
Expansion	54	*OP9	Use to select the command pulse rotation direction, encoder output pulse direction and encoder pulse output setting. O	0000		Refer to Name and function column.	P·S·T

Class	No.	Symbol		Name and function	1	Initial value	Unit	Setting range	Control mode
	55	*OPA	constant (parameter 0 0 0 0 Potim 0	osition command accelence constant control : Primary delay : Linear acceleration/de	eration/deceleration	0000 e		Refer to Name and function column.	P
	56	SIC		time-out selection nunication protocol tim ne-out check is not ma		0	s	0 1 to 60	P·S·T
	57		For manufacturer sett Do not change this val	ing	ue.	10			
Expansion parameters 2	58	NH1	Machine resonance su Used to selection the (Refer to Section 8.1. O Setting Frequency value O Invalid O1 4500 O2 2250 O3 1500 O4 1125 O5 900 O6 750 O7 642.9	ppression filter 1 machine resonance su) Notch frequency selective Set "00" when you have suppression control to b parameter No. 60: □1□	on e set adaptive vibration be "valid" or "held" I or I or I or II or II 281.3	0000		Refer to Name and function column.	P·S·T
	59	NH2	Notcl Sar How set be	ppression filter 2 nine resonance suppres h frequency me setting as in parame wever, you need not se adaptive vibration supp "valid" or "held". h depth me setting as in parame	eter No. 58 t "00" if you have pression control to	0000		Refer to Name and function column.	P·S·T

Class	No.	Symbol	Name and function	Initial value	Unit	Setting range	Control mode
Expansion parameters 2	60	LPF	Low-pass filter/adaptive vibration suppression control Used to selection the low-pass filter and adaptive vibration suppression control. (Refer to Chapter 8.) O	0000		Refer to Name and function column.	P·S·T
	61	GD2B	Ratio of load inertia moment to servo motor inertia moment 2 Used to set the ratio of load inertia moment to servo motor inertia moment when gain changing is valid.	70	imes 0.1 times	0 to 3000	P•S
	62	PG2B	Position control gain 2 changing ratio Used to set the ratio of changing the position control gain 2 when gain changing is valid. Made valid when auto tuning is invalid.	100	%	10 to 200	P
	63	VG2B	Speed control gain 2 changing ratio Used to set the ratio of changing the speed control gain 2 when gain changing is valid. Made valid when auto tuning is invalid.	100	%	10 to 200	P·S
	64	VICB	Speed integral compensation changing ratio Used to set the ratio of changing the speed integral compensation when gain changing is valid. Made valid when auto tuning is invalid.	100	%	50 to 1000	P•S

Class	No.	Symbol	Name and function	Initial value	Unit	Setting range	Control mode
	65	*CDP	Gain changing selection Used to select the gain changing condition. (Refer to Section 8.3.) Gain changing selection Gains are changed in accordance with the settings of parameters No. 61 to 64 under any of the following conditions: 0: Invalid 1: Gain changing (CDP) signal is ON 2: Command frequency is equal to higher than parameter No. 66 setting 3: Droop pulse value is equal to higher than parameter No. 66 setting 4: Servo motor speed is equal to higher than parameter No. 66 setting	0000		Refer to Name and function column.	P∙S
Expansion parameters 2	66	CDS	Gain changing condition Used to set the value of gain changing condition (command frequency, droop pulses, servo motor speed) selected in parameter No. 65.The set value unit changes with the changing condition item. (Refer to Section 8.5.)	10	kpps pulse r/min	10 to 9999	P•S
Expansion	67	CDT	Gain changing time constant Used to set the time constant at which the gains will change in response to the conditions set in parameters No. 65 and 66. (Refer to Section 8.5.)	1	ms	0 to 100	P•S
	68		For manufacturer setting Do not change this value by any means.	0			
	69	CMX2	Command pulse multiplying factor numerator 2 Used to set the multiplier for the command pulse. Setting "0" automatically sets the connected motor resolution.	1		0·1 to 65535	Р
	70	CMX3	Command pulse multiplying factor numerator 3 Used to set the multiplier for the command pulse. Setting "0" automatically sets the connected motor resolution.	1		0·1 to 65535	Р
	71	CMX4	Command pulse multiplying factor numerator 4 Used to set the multiplier for the command pulse. Setting "0" automatically sets the connected motor resolution.	1		0·1 to 65535	Р
	72	SC4	Internal speed command 4 Used to set speed 4 of internal speed commands.	200	r/min	0 to instantaneous	S
			Internal speed limit 4 Used to set speed 4 of internal speed limits.			permi- ssible speed	Т

5. PARAMETERS

Class	No.	Symbol	Name and function	Initial value	Unit	Setting range	Control mode
	73	SC5	Internal speed command 5 Used to set speed 5 of internal speed commands. Internal speed limit 5	300	r/min	0 to instantaneous	S
			Used to set speed 5 of internal speed limits.			ssible speed	
	74	SC6	Internal speed command 6 Used to set speed 6 of internal speed commands.	500	r/min	0 to instantaneous	S
			Internal speed limit 6 Used to set speed 6 of internal speed limits.			permi- ssible speed	Т
neters 2	75	SC7	Internal speed command 7 Used to set speed 7 of internal speed commands.	800	r/min	0 to instantaneous	S
Expansion parameters			Internal speed limit 7 Used to set speed 7 of internal speed limits.			permissible speed	Т
Expan	76	TL2	Internal torque limit 2 Set this parameter to limit servo motor torque on the assumption that the maximum torque is 100[%]. When 0 is set, torque is not produced.	100	%	0 to 100	P·S·T
	77 78 79 80 81 82 83		For manufacturer setting Do not change this value by any means.	00 10000 10 10 10 100 100 100 0000			

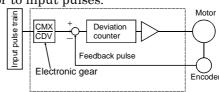
5. PARAMETERS

5.2 Detailed description

5.2.1 Electronic gear

ACAUTION

· Wrong setting can lead to unexpected fast rotation, causing injury.


POINT

- The guideline of the electronic gear setting range is $\frac{1}{50} < \frac{\text{CMX}}{\text{CDV}} < 500$.
- If the set value is outside this range, noise may be generated during acceleration/ deceleration or operation may not be performed at the preset speed and/or acceleration/deceleration time constants.
- The following specification symbols are required to calculate the electronic gear.

(1) Concept of electronic gear

The machine can be moved at any multiplication factor to input pulses.

$$\frac{\text{CMX}}{\text{CDV}} = \frac{\text{Parameter No.3}}{\text{Parameter No.4}}$$

The following setting examples are used to explain how to calculate the electronic gear:

POINT

 $\mbox{\ }^{\bullet}$ The following specification symbols are required to calculate the electronic gear

Pb: Ballscrew lead [mm]

n : Reduction ratio

Pt : Servo motor resolution [pulses/rev]

 $\Delta \ell_0$: Travel per command pulse [mm/pulse]

ΔS: Travel per servo motor revolution [mm/rev]

 $\Delta\theta^{\circ}$: Angle per pulse [°/pulse]

Δθ : Angle per revolution [° /rev]

(a) For motion in increments of 10µm per pulse

Machine specifications

Ballscrew lead Pb =10 [mm]

Reduction ratio: n = 1/2

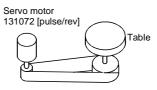
Servo motor resolution: Pt = 131072 [pulses/rev]

n=NL/NM nL Pb=10[mm]
Servo motor
131072 [pulse/rev]

$$\frac{CMX}{CDV} = \Delta \ell_0 \cdot \frac{Pt}{\Delta S} = \Delta \ell_0 \cdot \frac{Pt}{n \cdot Pb} = 10 \times 10^{-3} \cdot \frac{131072}{1/2 \cdot 10} = \frac{262144}{1000} = \frac{32768}{125}$$

Hence, set 32768 to CMX and 125 to CDV.

(b) Conveyor setting example


For rotation in increments of 0.01° per pulse

Machine specifications

Table: 360°/rev

Reduction ratio: n = 4/64

Servo motor resolution: Pt = 131072 [pulses/rev]

Timing belt: 4/64

$$\frac{\text{CMX}}{\text{CDV}} = \Delta \theta^{\circ} \cdot \frac{\text{Pt}}{\Delta \theta} = 0.01 \cdot \frac{131072}{4/64 \cdot 360} = \frac{65536}{1125}$$
 (5.2)

Since CMX is not within the setting range in this status, it must be reduced to the lowest term. When CMX has been reduced to a value within the setting range, round off the value to the nearest unit.

$$\frac{\mathrm{CMX}}{\mathrm{CDV}} = \frac{65536}{1125} = \frac{26214.4}{450} \cong \frac{26214}{450}$$

Hence, set 26214 to CMX and 450 to CDV.

POINT

- When "0" is set to parameter No.3 (CMX), CMX is automatically set to the servo motor resolution. Therefore, in the case of Expression (5.2), setting 0 to CMX and 2250 to CDX concludes in the following expression: CMX/CDV=131072/2250, and electric gear can be set without the necessity to reduce the fraction to the lowest term.
- For unlimited one-way rotation, e.g. an index table, indexing positions will be missed due to cumulative error produced by rounding off.

For example, entering a command of 36000 pulses in the above example causes the table to rotate only:

$$36000 \cdot \frac{26214}{450} \cdot \frac{1}{131072} \cdot \frac{4}{64} \cdot 360^{\circ} = 359.995^{\circ}$$

Therefore, indexing cannot be done in the same position on the table.

(2) Instructions for reduction

The calculated value before reduction must be as near as possible to the calculated value after reduction.

In the case of (1), (b) in this section, an error will be smaller if reduction is made to provide no fraction for CDV. The fraction of Expression (5.1) before reduction is calculated as follows.

$$\frac{\text{CMX}}{\text{CDV}} = \frac{65536}{1125} = 58.25422.$$
 (5.2)

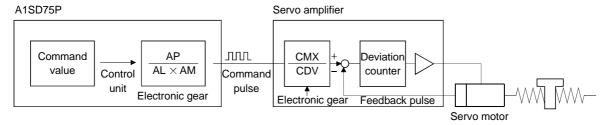
The result of reduction to provide no fraction for CMX is as follows.

$$\frac{\text{CMX}}{\text{CDV}} = \frac{65536}{1125} = \frac{32768}{562.5} \cong \frac{32768}{563} = 58.20249. \tag{5.3}$$

The result of reduction to provide no fraction for CDV is as follows.

$$\frac{\text{CMX}}{\text{CDV}} = \frac{65536}{1125} = \frac{26214.4}{450} \cong \frac{26214}{450} = 58.25333. \tag{5.4}$$

As a result, it is understood that the value nearer to the calculation result of Expression (5.2) is the result of Expression (5.4). Accordingly, the set values of (1), (b) in this section are CMX=26214, CDV=450.


(3) Setting for use of A1SD75P

The A1SD75P also has the following electronic gear parameters. Normally, the servo amplifier side electronic gear must also be set due to the restriction on the command pulse frequency (differential 400kpulse/s, open collector 200kpulse/s).

AP: Number of pulses per motor revolution

AL: Moving distance per motor revolution

AM: Unit scale factor

The resolution of the servo motor is 131072 pulses/rev. For example, the pulse command needed to rotate the servo motor is as follows

Servo motor speed [r/min]	Required pulse command
2000	$131072 \times 2000/60 = 4369066$ pulse/s
3000	$131072 \times 3000/60 = 6553600$ pulse/s

For the A1SD75P, the maximum value of the pulse command that may be output is 200kpulse/s in the open collector system or 400kpulse/s in the differential line driver system. Hence, either of the servo motor speeds exceeds the maximum output pulse command of the A1SD75P.

Use the electronic gear of the servo amplifier to run the servo motor under the maximum output pulse command of the A1SD75P.

To rotate the servo motor at 3000r/min in the open collector system (200kpulse/s), set the electronic gear as follows

$$f \cdot \frac{CMX}{CDV} = \frac{N_0}{60} \cdot pt$$

f : Input pulses [pulse/s]

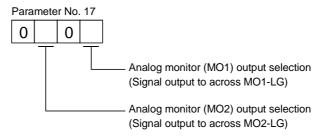
 $\begin{array}{lll} N_0 & \vdots & Servo \ motor \ speed \ [r/min] \\ Pt & \vdots & Servo \ motor \ resolution \ [pulse/rev] \end{array}$

$$200 \cdot 10^{3} \cdot \frac{\text{CMX}}{\text{CDV}} = \frac{3000}{60} \cdot 131072$$

$$\frac{\text{CMX}}{\text{CDV}} = \frac{3000}{60} \cdot \frac{131072}{200} = \frac{3000 \cdot 131072}{60 \cdot 200000} = \frac{4096}{125}$$

The following table indicates the electronic gear setting example (ballscrew lead = 10mm) when the A1SD75P is used in this way.

	Rated servo m	otor speed	3000r/min		2000r/min		
	Input system	Open collector	Differential line driver	Open collector	Differential line driver		
Servo amplifier	Max. input pulse fre	equency [kpulse/s]		200	500	200	500
	Feedback pulse/revo	olution [pulse/rev]		131	131072 131072		1072
	Electronic gear (CM	X/CDV)	4096/125	2048/125	8192/375	4096/375	
	Command pulse fre	200	400	200	400		
	Number of pulses poviewed from A1SD7	er servo motor revolution as 5P[pulse/rev]	4000	8000	6000	12000	
		3.6:	AP	1	1	1	1
A1SD75P		Minimum command unit	AL	1	1	1	1
	T21	1pulse	AM	1	1	1	1
	Electronic gear	3.4:	AP	4000	8000	6000	12000
		Minimum command unit	AL	100.0[μm]	100.0[μm]	100.0[μm]	100.0[μm]
	0.1μm			10	10	10	10

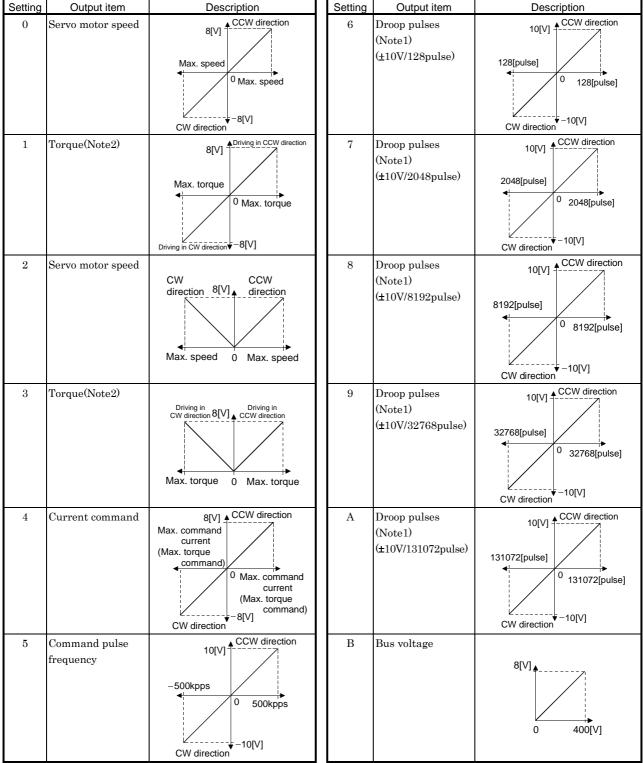

Note. Command pulse frequency at rated speed

5.2.2 Analog monitor

The servo status can be output to two channels in terms of voltage. The servo status can be monitored using an ammeter.

(1) Setting

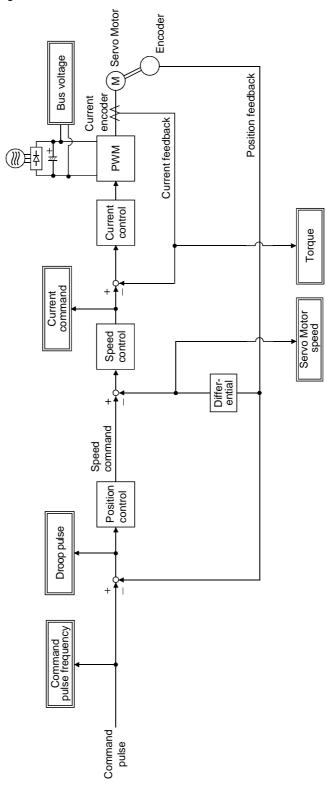
Change the following digits of parameter No.17:


Parameters No.31 and 32 can be used to set the offset voltages to the analog output voltages. The setting range is between -999 and 999mV.

Parameter No.	Description	Setting range [mV]
31	Used to set the offset voltage for the analog monitor 1 (MO1).	
32	Used to set the offset voltage for the analog monitor 2 (MO2)	-999 to 999
52	output.	

(2) Set content

The servo amplifier is factory-set to output the servo motor speed to analog monitor 1 (MO1) and the torque to analog monitor (MO2). The setting can be changed as listed below by changing the parameter No.17 value:


Refer to Appendix 2 for the measurement point.

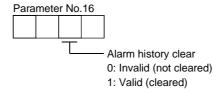
Note1. Encoder pulse unit.

^{2. 8}V is outputted at the maximum torque. However, when parameter No.28 $^{\bullet}$ 76 are set to limit torque, 8V is outputted at the torque highly limited.

(3) Analog monitor block diagram

5.2.3 Using forward/reverse rotation stroke end to change the stopping pattern

The stopping pattern is factory-set to make a sudden stop when the forward/reverse rotation stroke end is made valid. A slow stop can be made by changing the parameter No. 22 value.

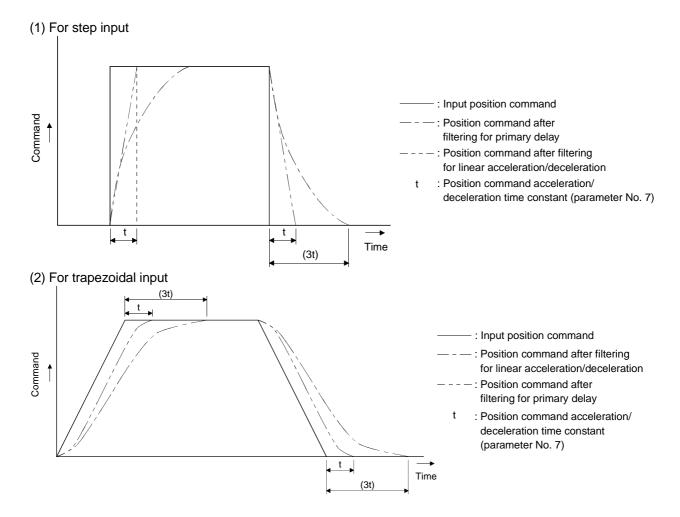

Parameter No.22 Setting		Stopping method
	Sudden stop	
	Position control mode	: Motor stops with droop pulses cleared.
(initial value)	Speed control mode	: Motor stops at deceleration time constant of zero.
	Slow stop	
0001	Position control mode	The motor is decelerated to a stop in accordance with the parameter No. 7 value.
	Speed control mode	The motor is decelerated to a stop in accordance with the parameter No. 12 value.

5.2.4 Alarm history clear

The servo amplifier stores one current alarm and five past alarms from when its power is switched on first. To control alarms which will occur during operation, clear the alarm history using parameter No.16 before starting operation.

Clearing the alarm history automatically returns to " $\Box\Box$ 0 \Box ".

After setting, this parameter is made valid by switch power from OFF to ON.

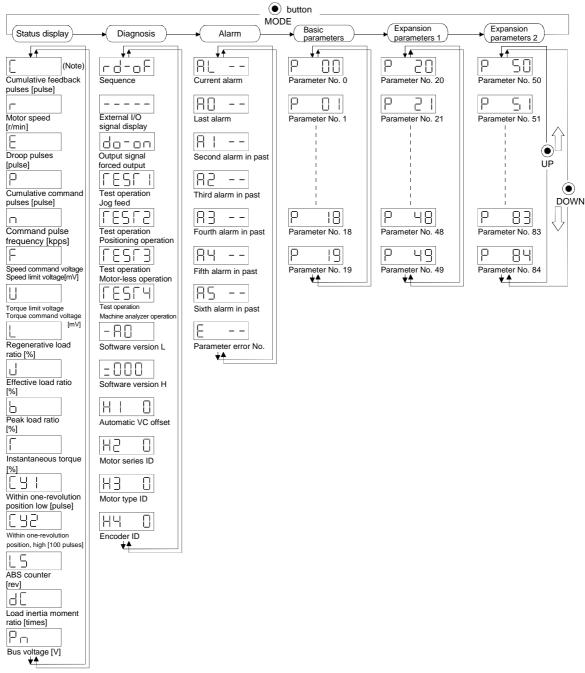


5.2.5 Position smoothing

By setting the position command acceleration/deceleration time constant (parameter No.7), you can run the servo motor smoothly in response to a sudden position command.

The following diagrams show the operation patterns of the servo motor in response to a position command when you have set the position command acceleration/deceleration time constant.

Choose the primary delay or linear acceleration/deceleration in parameter No. 55 according to the machine used.



6. DISPLAY AND OPERATION

6.1 Display flowchart

Use the display (5-digit, 7-segment LED) on the front panel of the servo amplifier for status display, parameter setting, etc. Set the parameters before operation, diagnose an alarm, confirm external sequences, and/or confirm the operation status. Press the "MODE" "UP" or "DOWN" button once to move to the next screen.

To refer to or set the expansion parameters, make them valid with parameter No. 19 (parameter write disable).

Note. The initial status display at power-on depends on the control mode.

Position control mode: Cumulative feedback pulses(C), Speed control mode: Motor speed(r),

Torque control mode: Torque command voltage(U)

Also, parameter No. 18 can be used to change the initial indication of the status display at power-on.

6.2 Status display

The servo status during operation is shown on the 5-digit, 7-segment LED display. Press the "UP" or "DOWN" button to change display data as desired. When the required data is selected, the corresponding symbol appears. Press the "SET" button to display its data. At only power-on, however, data appears after the symbol of the status display selected in parameter No. 18 has been shown for 2[s].

The servo amplifier display shows the lower five digits of 16 data items such as the servo motor speed.

6.2.1 Display examples

The following table lists display examples:

The following table lists display examples.								
Item	Status	Displayed data						
item	Status	Servo amplifier display						
Servo motor	Forward rotation at 3000r/min							
speed	Reverse rotation at 3000r/min							
		Reverse rotation is indicated by "-".						
Load inertia moment	15.5 times							
	11252pulse							
Multi- revolution counter	—12566pulse	Negative value is indicated by the lit decimal points in the upper four						
		digits.						

6.2.2 Status display list

The following table lists the servo statuses that may be shown:

Refer to Appendix 2 for the measurement point.

Name	Symbol	Unit	Description	Display range
Cumulative feedback pulses	С	pulse	Feedback pulses from the servo motor encoder are counted and displayed. The value in excess of ±99999 is counted, bus since the servo amplifier display is five digits, it shows the lower five digits of the actual value. Press the "SET" button to reset the display value to zero. Reverse rotation is indicated by the lit decimal points in the upper form digits.	-99999 to 99999
Servo motor speed	r	r/min	four digits. The servo motor speed is displayed. The value rounded off is displayed in $\times 0.1 \text{r/min}$.	-5400 to 5400
Droop pulses	Е	pulse	The number of droop pulses in the deviation counter is displayed. When the servo motor is rotating in the reverse direction, the decimal points in the upper four digits are lit. Since the servo amplifier display is five digits, it shows the lower five digits of the actual value. The number of pulses displayed is not yet multiplied by the electronic graph.	-99999 to 99999
Cumulative command pulses	P	pulse	gear. The position command input pulses are counted and displayed. As the value displayed is not yet multiplied by the electronic gear (CMX/CDV), it may not match the indication of the cumulative feedback pulses. The value in excess of ±99999 is counted, but since the servo amplifier display is five digits, it shows the lower five digits of the actual value. Press the "SET" button to reset the display value to zero. When the servo motor is rotating in the reverse direction, the decimal points in the upper four digits are lit.	-99999 to 99999
Command pulse frequency	n	kpps	The frequency of the position command input pulses is displayed. The value displayed is not multiplied by the electronic gear (CMX/CDV).	-800 to 800
Analog speed command voltage Analog speed limit voltage	F	V	(1) Torque control mode Analog speed limit (VLA) voltage is displayed. (2) Speed control mode Analog speed command (VC) voltage is displayed.	-10.00 to 10.00
Analog torque command voltage Analog torque limit voltage	U	V	 (1) Position control mode, speed control mode	0 to +10V -10 to
Regenerative load ratio	L	%	The ratio of regenerative power to permissible regenerative power is displayed in %.	+10V 0 to 100
Effective load ratio	J	%	The continuous effective load torque is displayed. The effective value in the past 15 seconds is displayed relative to the rated torque of 100%.	0 to 300
Peak load ratio	b	%	The maximum torque generated during acceleration/deceleration, etc. The highest value in the past 15 seconds is displayed relative to the rated torque of 100%.	0 to 400
Instantaneous torque	Т	%	Torque that occurred instantaneously is displayed. The value of the torque that occurred is displayed in real time relative to the rate torque of 100%.	0 to 400
Within one-revolution position low	Cy1	pulse	Position within one revolution is displayed in encoder pulses. The value returns to 0 when it exceeds the maximum number of pulses. The value is incremented in the CCW direction of rotation.	0 to 99999

6. DISPLAY AND OPERATION

Name	Symbol	Unit	Description	Display range
Within one-revolution	Cy2	100	The within one-revolution position is displayed in 100 pulse	0
position high		pulse	increments of the encoder.	to
			The value returns to 0 when it exceeds the maximum number of	1310
			pulses.	
			The value is incremented in the CCW direction of rotation.	
ABS counter	LS	rev	Travel value from the home position in the absolute position	-32768
			detection systems is displayed in terms of the absolute position	to
			detectors counter value.	32767
Load inertia moment	dC	0.1	The estimated ratio of the load inertia moment to the servo motor	0.0
ratio		Times	shaft inertia moment is displayed.	to
				300.0
Bus voltage	Pn	V	The voltage (across P-N) of the main circuit converter is displayed.	0
				to
				450

6.2.3 Changing the status display screen

The status display item of the servo amplifier display shown at power-on can be changed by changing the parameter No. 18 settings.

The item displayed in the initial status changes with the control mode as follows:

Control mode	Status display at power-on
Position	Cumulative feedback pulses
Position/speed	Cumulative feedback pulses/servo motor speed
Speed	Servo motor speed
Speed/torque	Servo motor speed/analog torque command voltage
Torque	Analog torque command voltage
Torque/position	Analog torque command voltage/cumulative feedback pulses

6.3 Diagnostic mode

N	ame	Display	Description
Cogne		-d-pF	Not ready. Indicates that the servo amplifier is being initialized or an alarm has occurred.
Sequence			Ready. Indicates that the servo was switched on after completion of initialization and the servo amplifier is ready to operate.
External I/O signal display		Refer to section 6.6.	Indicates the ON-OFF states of the external I/O signals. The upper segments correspond to the input signals and the lower segments to the output signals. Lit: ON Extinguished: OFF The I/O signals can be changed using parameters No. 43 to 49.
Output sig			The digital output signal can be forced on/off. For more information, refer to section 6.7.
	Jog feed		Jog operation can be performed when there is no command from the external command device. For details, refer to section 6.8.2.
Test operation	Positioning operation	[EST2	The MR Configurator (servo configuration software MRZJW3-SETUP151E) is required for positioning operation. This operation cannot be performed from the operation section of the servo amplifier. Positioning operation can be performed once when there is no command from the external command device.
mode	Motorless operation		Without connection of the servo motor, the servo amplifier provides output signals and displays the status as if the servo motor is running actually in response to the external input signal. For details, refer to section 6.8.4.
	Machine analyzer operation		Merely connecting the servo amplifier allows the resonance point of the mechanical system to be measured. The MR Configurator (servo configuration software MRZJW3-SETUP151E) is required for machine analyzer operation.
Software v	version low		Indicates the version of the software.
Software version high			Indicates the system number of the software.
Automatic VC offset			If offset voltages in the analog circuits inside and outside the servo amplifier cause the servo motor to rotate slowly at the analog speed command (VC) or analog speed limit (VLA) of 0V, this function automatically makes zero-adjustment of offset voltages. When using this function, make it valid in the following procedure. Making it valid causes the parameter No. 29 value to be the automatically adjusted offset voltage. 1) Press "SET" once. 2) Set the number in the first digit to 1 with "UP"/"DOWN". 3) Press "SET". You cannot use this function if the input voltage of VC or VLA is ±0.4V or more.

Name	Display	Description
Motor series		Press the "SET" button to show the motor series ID of the servo motor currently connected. For indication details, refer to the optional MELSERVO Servo Motor Instruction Manual.
Motor type	H3 []	Press the "SET" button to show the motor type ID of the servo motor currently connected. For indication details, refer to the optional MELSERVO Servo Motor Instruction Manual.
Encoder	H4 []	Press the "SET" button to show the encoder ID of the servo motor currently connected. For indication details, refer to the optional MELSERVO Servo Motor Instruction Manual.

6.4 Alarm mode

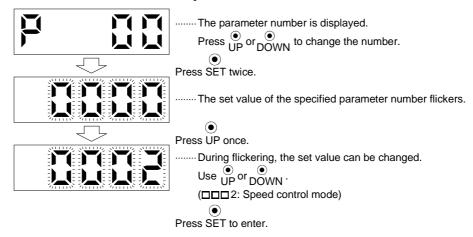
The current alarm, past alarm history and parameter error are displayed. The lower 2 digits on the display indicate the alarm number that has occurred or the parameter number in error. Display examples are shown below.

Name	Display	Description
Current alarm		Indicates no occurrence of an alarm.
Current alarm		Indicates the occurrence of overvoltage (AL.33). Flickers at occurrence of the alarm.
	AO 50	Indicates that the last alarm is overload 1 (AL.50).
	EE ! A	Indicates that the second alarm in the past is overvoltage (AL.33).
A1 . 1	A5 10	Indicates that the third alarm in the past is undervoltage (AL.10).
Alarm history	I E ER	Indicates that the fourth alarm in the past is overspeed (AL.31).
	A4	Indicates that there is no fifth alarm in the past.
	85	Indicates that there is no sixth alarm in the past.
D	E	Indicates no occurrence of parameter error (AL.37).
Parameter error No.	E . I !	Indicates that the data of parameter No. 1 is faulty.

Functions at occurrence of an alarm

- (1) Any mode screen displays the current alarm.
- (2) Even during alarm occurrence, the other screen can be viewed by pressing the button in the operation area. At this time, the decimal point in the fourth digit remains flickering.
- (3) For any alarm, remove its cause and clear it in any of the following methods (for clearable alarms, refer to Section 10.2.1):
 - (a) Switch power OFF, then ON.
 - (b) Press the "SET" button on the current alarm screen.
 - (c) Turn on the alarm reset (RES).
- (4) Use parameter No. 16 to clear the alarm history.
- (5) Pressing "SET" on the alarm history display screen for 2s or longer shows the following detailed information display screen. Note that this is provided for maintenance by the manufacturer.

(6) Press "UP" or "DOWN" to move to the next history.


6.5 Parameter mode

The parameters whose abbreviations are marked* are made valid by changing the setting and then switching power off once and switching it on again. Refer to Section 5.1.2.

(1) Operation example

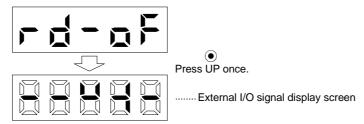
The following example shows the operation procedure performed after power-on to change the control mode (parameter No. 0) to the speed control mode.

Using the "MODE" button, show the basic parameter screen.

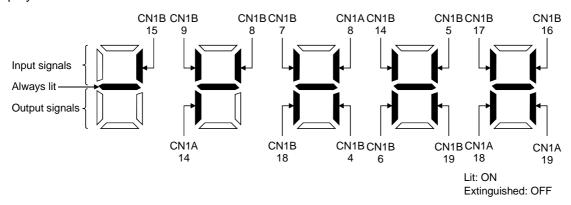
To shift to the next parameter, press the $\begin{tabular}{c} \bullet \ / \ \bullet \\ \mbox{UP DOWN button.} \end{tabular}$

When changing the parameter No. 0 setting, change its set value, then switch power off once and switch it on again to make the new value valid.

(2) Expansion parameters


To use the expansion parameters, change the setting of parameter No. 19 (parameter write disable). Refer to section 5.1.1.

6.6 External I/O signal display


The ON/OFF states of the digital I/O signals connected to the servo amplifier can be confirmed.

(1) Operation

Call the display screen shown after power-on. Using the "MODE" button, show the diagnostic screen.

(2) Display definition

The 7-segment LED shown above indicates ON/OFF.

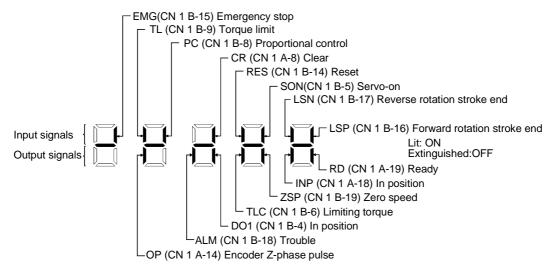
Each segment at top indicates the input signal and each segment at bottom indicates the output signal. The signals corresponding to the pins in the respective control modes are indicated below:

(a) Control modes and I/O signals

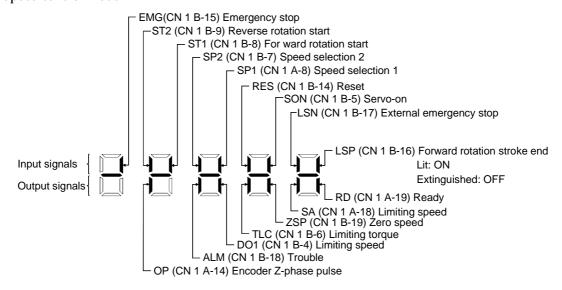
		Signal		(Note 2) Sy	mbols of I/O	signals in cor	trol modes		Related
Connector	Pin No.	input/output (Note 1) I/O	Р	P/S	S	S/T	Т	T/P	parameter
	8	I	CR	CR/SP1	SP1	SP1	SP1	SP1/CR	No.43 to 48
CNIA	14	О	OP	OP	OP	OP	OP	OP	
CN1A	18	0	INP	INP/SA	SA	SA/—		-/INP	No.49
	19	0	RD	RD	RD	RD	RD	RD	No.49
	(Note 3) 4	0	DO1	DO1	DO1	DO1	DO1	DO1	
	5	I	SON	SON	SON	SON	SON	SON	No.43 to 48
	6	0	TLC	TLC	TLC	TLC/VLC	VLC	VLC/TLC	No.49
	7	I		LOP	SP2	LOP	SP2	LOP	No.43 to 48
	8	I	PC	PC/ST1	ST1	ST1/RS2	RS2	RS2/PC	No.43 to 48
CN1B	9	I	TL	TL/ST2	ST2	ST2/RS1	RS1	RS1/TL	No.43 to 48
CNIB	14	I	RES	RES	RES	RES	RES	RES	No.43 to 48
	15	I	EMG	EMG	EMG	EMG	EMG	EMG	
	16	I	LSP	LSP	LSP	LSP/-		-/LSP	
	17	I	LSN	LSN	LSN	LSN/—		-/LSN	
	18	0	ALM	ALM	ALM	ALM	ALM	ALM	No.49
	19	0	ZSP	ZSP	ZSP	ZSP	ZSP	ZSP	No.1 · 49

Note 1. I: Input signal, O: Output signal

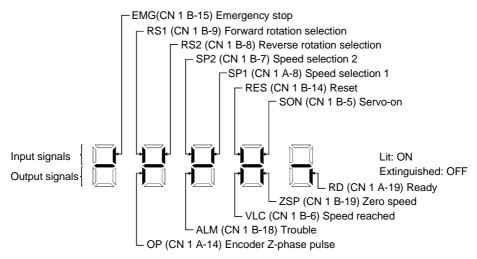
(b) Symbol and signal names


Symbol	Signal name	Symbol	Signal name
SON	Servo-on	EMG	Emergency stop
LSP	Forward rotation stroke end	LOP	Control change
LSN	Reverse rotation stroke end	TLC	Limiting torque
CR	Clear	VLC	Limiting speed
SP1	Speed selection 1	RD	Ready
SP2	Speed selection 2	ZSP	Zero speed
PC	Proportion control	INP	In position
ST1	Forward rotation start	SA	Speed reached
ST2	Reverse rotation start	ALM	Trouble
RS1	Forward rotation selection	WNG	Warning
RS2	Reverse rotation selection	OP	Encoder Z-phase pulse (open collector)
TL	Torque limit	BWNG	Battery warning
RES	Reset		

^{2.} P: Position control mode, S: Speed control mode, T: Torque control mode, P/S: Position/speed control change mode, S/T: Speed/torque control change mode, T/P: Torque/position control change mode


^{3.} CN1B-4 and CN1A-18 output signals are the same.

(3) Default signal indications

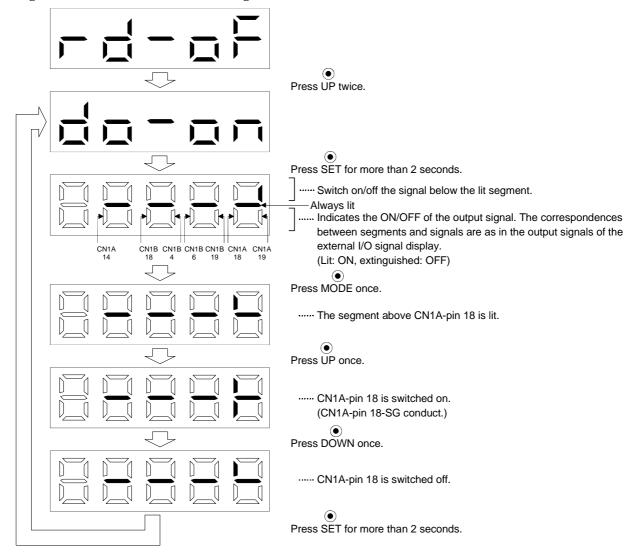

(a) Position control mode

(b) Speed control mode

(c) Torque control mode

6.7 Output signal (DO) forced output

POINT


• When the servo system is used in a vertical lift application, turning on the electromagnetic brake interlock (MBR) after assigning it to pin CN1B-19 will release the electromagnetic brake, causing a drop. Take drop preventive measures on the machine side.

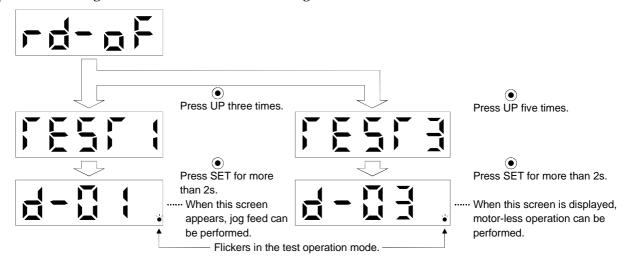
The output signal can be forced on/off independently of the servo status. This function is used for output signal wiring check, etc. This operation must be performed in the servo off state servo-on (SON).

Operation

Call the display screen shown after power-on.

Using the "MODE" button, show the diagnostic screen.

6.8 Test operation mode


- The test operation mode is designed to confirm servo operation and not to confirm machine operation. In this mode, do not use the servo motor with the machine. Always use the servo motor alone.
- If any operational fault has occurred, stop operation using the emergency stop (EMG) signal.

POINT

- The test operation mode cannot be used in the absolute position detection system. Use it after choosing "Incremental system" in parameter No. 1.
- The MR Configurator (servo configuration software) is required to perform positioning operation.
- Test operation cannot be performed if the servo-on (SON) is not turned OFF.

6.8.1 Mode change

Call the display screen shown after power-on. Choose jog operation/motor-less operation in the following procedure. Using the "MODE" button, show the diagnostic screen.

6.8.2 Jog operation

Jog operation can be performed when there is no command from the external command device.

(1) Operation

Connect EMG-SG to start jog operation and connect VDD-COM to use the internal power supply. Hold down the "UP" or "DOWN" button to run the servo motor. Release it to stop. When using the MR Configurator (servo configuration software), you can change the operation conditions. The initial conditions and setting ranges for operation are listed below:

Item	Initial setting	Setting range
Speed [r/min]	200	0 to instantaneous permissible speed
Acceleration/deceleration time constant [ms]	1000	0 to 50000

How to use the buttons is explained below:

Button	Description
"I IP"	Press to start CCW rotation.
UP	Release to stop.
"DOWN"	Press to start CW rotation.
DOWN	Release to stop.

If the communication cable is disconnected during jog operation performed by using the MR Configurator (servo configuration software), the servo motor will be decelerated to a stop.

(2) Status display

You can confirm the servo status during jog operation.

Pressing the "MODE" button in the jog operation-ready status calls the status display screen. With this screen being shown, perform jog operation with the "UP" or "DOWN" button. Every time you press the "MODE" button, the next status display screen appears, and on completion of a screen cycle, pressing that button returns to the jog operation-ready status screen. For full information of the status display, refer to Section 6.2. In the test operation mode, you cannot use the "UP" and "DOWN" buttons to change the status display screen from one to another.

(3) Termination of jog operation

To end the jog operation, switch power off once or press the "MODE" button to switch to the next screen and then hold down the "SET" button for 2 or more seconds.

6.8.3 Positioning operation

POINT

• The MR Configurator (servo configuration software) is required to perform positioning operation.

Positioning operation can be performed once when there is no command from the external command device.

(1) Operation

Connect EMG-SG to start positioning operation and connect VDD-COM to use the internal power supply.

Pressing the "Forward" or "Reverse" click on the MR Configurator (servo configuration software) starts the servo motor, which will then stop after moving the preset travel distance. You can change the operation conditions on the MR Configurator (servo configuration software). The initial conditions and setting ranges for operation are listed below:

Item	Initial setting	Setting range
Travel distance [pulse]	10000	0 to 9999999
Speed [r/min]	200	0 to instantaneous permissible speed
Acceleration/deceleration time constant [ms]	1000	0 to 50000

How to use the buttons is explained below:

Button	Description
"Forward"	Click to start positioning operation CCW.
"Reverse"	Click to start positioning operation CW.
"Pause"	Click during operation to make a temporary stop. Click the "Pause" button again erases the remaining distance. To resume operation, press the click that was pressed to start the operation.

If the communication cable is disconnected during positioning operation, the servo motor will come to a sudden stop.

(2) Status display

You can monitor the status display even during positioning operation.

6.8.4 Motor-less operation

Without connecting the servo motor, you can provide output signals or monitor the status display as if the servo motor is running in response to external input signals. This operation can be used to check the sequence of a host programmable controller or the like.

(1) Operation

After turning off the signal across SON-SG, choose motor-less operation. After that, perform external operation as in ordinary operation.

(2) Status display

You can confirm the servo status during motor-less operation.

Pressing the "MODE" button in the motor-less operation-ready status calls the status display screen. With this screen being shown, perform motor-less operation. Every time you press the "MODE" button, the next status display screen appears, and on completion of a screen cycle, pressing that button returns to the motor-less operation-ready status screen. For full information of the status display, refer to Section 6.2. In the test operation mode, you cannot use the "UP" and "DOWN" buttons to change the status display screen from one to another.

(3) Termination of motor-less operation

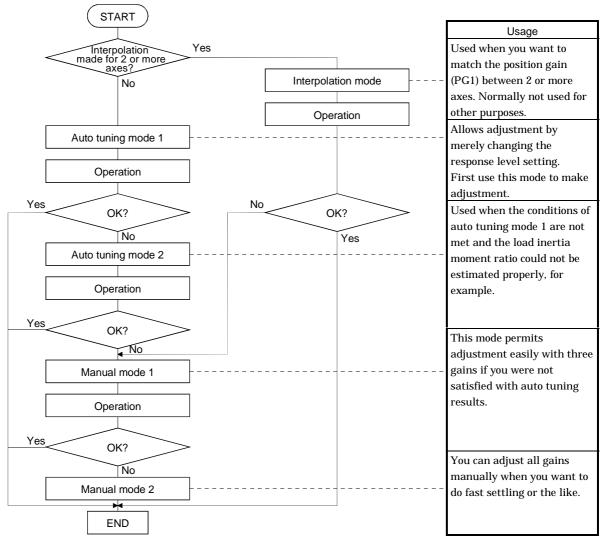
To terminate the motor-less operation, switch power off.

7. GENERAL GAIN ADJUSTMENT

POINT

• For use in the torque control mode, you need not make gain adjustment.

7.1 Different adjustment methods


7.1.1 Adjustment on a single servo amplifier

The gain adjustment in this section can be made on a single servo amplifier. For gain adjustment, first execute auto tuning mode 1. If you are not satisfied with the results, execute auto tuning mode 2, manual mode 1 and manual mode 2 in this order.

(1) Gain adjustment mode explanation

Gain adjustment mode	Parameter No. 2 setting	Estimation of load inertia moment ratio	Automatically set parameters	Manually set parameters
A				D
Auto tuning mode 1	010□	Always estimated	PG1 (parameter No. 6)	Response level setting of
(initial value)			GD2 (parameter No. 34)	parameter No. 2
			PG2 (parameter No. 35)	
			VG1 (parameter No. 36)	
			VG2 (parameter No. 37)	
			VIC (parameter No. 38)	
Auto tuning mode 2	020□	Fixed to parameter No.	PG1 (parameter No. 6)	GD2 (parameter No. 34)
		34 value	PG2 (parameter No. 35)	Response level setting of
			VG1 (parameter No. 36)	parameter No. 2
			VG2 (parameter No. 37)	
			VIC (parameter No. 38)	
Manual mode 1	030□		PG2 (parameter No. 35)	PG1 (parameter No. 6)
			VG1 (parameter No. 36)	GD2 (parameter No. 34)
				VG2 (parameter No. 37)
				VIC (parameter No. 38)
Manual mode 2	040□			PG1 (parameter No. 6)
				GD2 (parameter No. 34)
				PG2 (parameter No. 35)
				VG1 (parameter No. 36)
				VG2 (parameter No. 37)
				VIC (parameter No. 38)
Interpolation mode	000□	Always estimated	GD2 (parameter No. 34)	PG1 (parameter No. 6)
			PG2 (parameter No. 35)	VG1 (parameter No. 36)
			VG2 (parameter No. 37)	
			VIC (parameter No. 38)	

7.1.2 Adjustment using MR Configurator (servo configuration software)

This section gives the functions and adjustment that may be performed by using the servo amplifier with the MR Configurator (servo configuration software) which operates on a personal computer.

Function	Description	Adjustment
Machine analyzer	With the machine and servo motor coupled, the characteristic of the mechanical system can be measured by giving a random vibration command from the personal computer to the servo and measuring the machine response.	determine the notch frequency of the machine resonance suppression filter. • You can automatically set the optimum gains in
Gain search	Executing gain search under to-and-fro positioning command measures settling characteristic while simultaneously changing gains, and automatically searches for gains which make settling time shortest.	You can automatically set gains which make positioning settling time shortest.
Machine simulation	Response at positioning settling of a machine can be simulated from machine analyzer results on personal computer.	1 0 9

7.2 Auto tuning

7.2.1 Auto tuning mode

The servo amplifier has a real-time auto tuning function which estimates the machine characteristic (load inertia moment ratio) in real time and automatically sets the optimum gains according to that value. This function permits ease of gain adjustment of the servo amplifier.

(1) Auto tuning mode 1

The servo amplifier is factory-set to the auto tuning mode 1.

In this mode, the load inertia moment ratio of a machine is always estimated to set the optimum gains automatically.

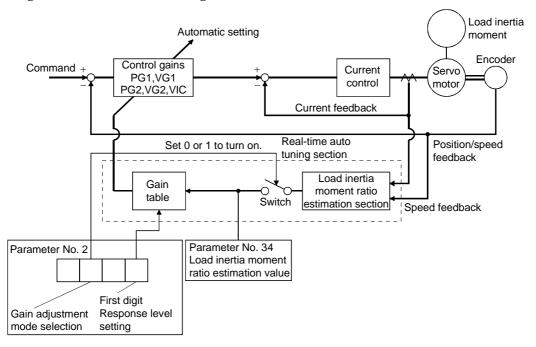
The following parameters are automatically adjusted in the auto tuning mode 1.

Parameter No.	Abbreviation	Name
6	PG1	Position control gain 1
34	GD2	Ratio of load inertia moment to servo motor inertia moment
35	PG2	Position control gain 2
36	VG1	Speed control gain 1
37	VG2	Speed control gain 2
38	VIC	Speed integral compensation

POINT

- The auto tuning mode 1 may not be performed properly if the following conditions are not satisfied.
 - Time to reach 2000r/min is the acceleration/deceleration time constant of 5s or less.
 - Speed is 150r/min or higher.
 - The ratio of load inertia moment to servo motor inertia moment is 100 times or less.
 - The acceleration/deceleration torque is 10% or more of the rated torque.
- Under operating conditions which will impose sudden disturbance torque during acceleration/deceleration or on a machine which is extremely loose, auto tuning may not function properly, either. In such cases, use the auto tuning mode 2 or manual mode 1,2 to make gain adjustment.

(2) Auto tuning mode 2


Use the auto tuning mode 2 when proper gain adjustment cannot be made by auto tuning mode 1. Since the load inertia moment ratio is not estimated in this mode, set the value of a correct load inertia moment ratio (parameter No. 34).

The following parameters are automatically adjusted in the auto tuning mode 2.

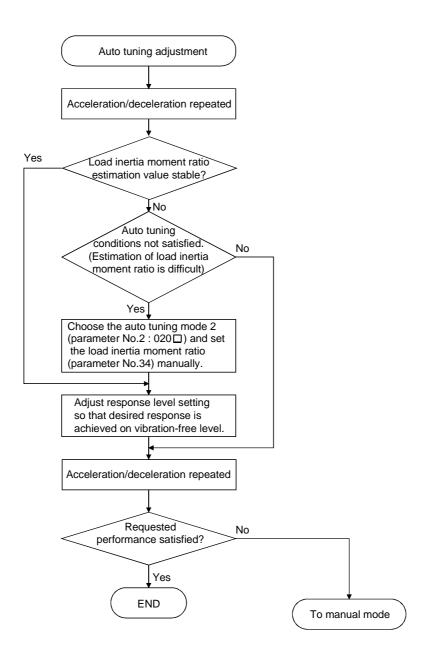
Parameter No.	Abbreviation	Name
6	PG1	Position control gain 1
35	PG2	Position control gain 2
36	VG1	Speed control gain 1
37	VG2	Speed control gain 2
38	VIC	Speed integral compensation

7.2.2 Auto tuning mode operation

The block diagram of real-time auto tuning is shown below.

When a servo motor is accelerated/decelerated, the load inertia moment ratio estimation section always estimates the load inertia moment ratio from the current and speed of the servo motor. The results of estimation are written to parameter No. 34 (the ratio of load inertia moment to servo motor). These results can be confirmed on the status display screen of the MR Configurator (servo configuration software) section.

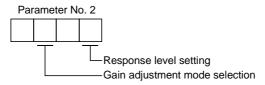
If the value of the load inertia moment ratio is already known or if estimation cannot be made properly, chose the "auto tuning mode 2" (parameter No.2: \square 2 \square \square) to stop the estimation of the load inertia moment ratio (Switch in above diagram turned off), and set the load inertia moment ratio (parameter No. 34) manually.


From the preset load inertia moment ratio (parameter No. 34) value and response level (The first digit of parameter No. 2), the optimum control gains are automatically set on the basis of the internal gain tale. The auto tuning results are saved in the EEP-ROM of the servo amplifier every 60 minutes since power-on. At power-on, auto tuning is performed with the value of each control gain saved in the EEP-ROM being used as an initial value.

POINT

- If sudden disturbance torque is imposed during operation, the estimation of the inertia moment ratio may malfunction temporarily. In such a case, choose the "auto tuning mode 2" (parameter No. 2: 020□) and set the correct load inertia moment ratio in parameter No. 34.
- When any of the auto tuning mode 1, auto tuning mode 2 and manual mode 1 settings is changed to the manual mode 2 setting, the current control gains and load inertia moment ratio estimation value are saved in the EEP-ROM.

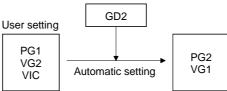
7.2.3 Adjustment procedure by auto tuning


Since auto tuning is made valid before shipment from the factory, simply running the servo motor automatically sets the optimum gains that match the machine. Merely changing the response level setting value as required completes the adjustment. The adjustment procedure is as follows.

7.2.4 Response level setting in auto tuning mode

Set the response (The first digit of parameter No.2) of the whole servo system. As the response level setting is increased, the trackability and settling time for a command decreases, but a too high response level will generate vibration. Hence, make setting until desired response is obtained within the vibration-free range.

If the response level setting cannot be increased up to the desired response because of machine resonance beyond 100Hz, adaptive vibration suppression control (parameter No. 60) or machine resonance suppression filter (parameter No. 58 • 59) may be used to suppress machine resonance. Suppressing machine resonance may allow the response level setting to increase. Refer to Section 8.1 for adaptive vibration suppression control and machine resonance suppression filter.


		Machi	ine characteristic
Response level setting	Machine rigidity	Machine resonance frequency guideline	Guideline of corresponding machine
1	Low	15Hz	
2		20Hz	
3		25Hz	
4	↑	30Hz	Large conveyor
5		35Hz	
6] [45Hz	Arm robot
7		55Hz	
8	Middle	70Hz	General machine tool conveyor
9		85Hz	Precision
A		105Hz	working
В		130Hz	machine
С]	160Hz	Inserter Mounter
D		200Hz	Bonder
Е		240Hz	
F	High	300Hz	

7.3 Manual mode 1 (simple manual adjustment)

If you are not satisfied with the adjustment of auto tuning, you can make simple manual adjustment with three parameters.

7.3.1 Operation of manual mode 1

In this mode, setting the three gains of position control gain 1 (PG1), speed control gain 2 (VG2) and speed integral compensation (VIC) automatically sets the other gains to the optimum values according to these gains.

Therefore, you can adjust the model adaptive control system in the same image as the general PI control system (position gain, speed gain, speed integral time constant). Here, the position gain corresponds to PG1, the speed gain to VG2 and the speed integral time constant to VIC. When making gain adjustment in this mode, set the load inertia moment ratio (parameter No. 34) correctly.

7.3.2 Adjustment by manual mode 1

POINT

• If machine resonance occurs, adaptive vibration suppression control (parameter No. 60) or machine resonance suppression filter (parameter No. 58 • 59) may be used to suppress machine resonance. (Refer to Section 8.1.)

(1) For speed control

(a) Parameters

The following parameters are used for gain adjustment:

Parameter No.	Abbreviation	Name
34	GD2	Ratio of load inertia moment to servo motor inertia moment
37	VG2	Speed control gain 2
38	VIC	Speed integral compensation

(b) Adjustment procedure

Step	Operation	Description
1	Set an estimated value to the ratio of load inertia moment to servo motor inertia moment (parameter No. 34).	
2	Increase the speed control gain 2 (parameter No. 37) within the vibration- and unusual noise-free range, and return slightly if vibration takes place.	
3	Decrease the speed integral compensation (parameter No. 38) within the vibration-free range, and return slightly if vibration takes place.	Decrease the time constant of the speed integral compensation.
4	If the gains cannot be increased due to mechanical system resonance or the like and the desired response cannot be achieved, response may be increased by suppressing resonance with adaptive vibration suppression control or machine resonance suppression filter and then executing steps 2 and 3.	Refer to Section 8.2, 8.3.
5	While checking the settling characteristic and rotational status, fine- adjust each gain.	Fine adjustment

(c)Adjustment description

1) Speed control gain 2 (parameter No. 37)

This parameter determines the response level of the speed control loop. Increasing this value enhances response but a too high value will make the mechanical system liable to vibrate. The actual response frequency of the speed loop is as indicated in the following expression:

Speed loop response _	Speed control gain 2 setting		
frequency(Hz)	(1+ratio of load inertia moment to servo motor inertia moment) $\times 2\pi$		

2) Speed integral compensation (VIC: parameter No. 38)

To eliminate stationary deviation against a command, the speed control loop is under proportional integral control. For the speed integral compensation, set the time constant of this integral control. Increasing the setting lowers the response level. However, if the load inertia moment ratio is large or the mechanical system has any vibratory element, the mechanical system is liable to vibrate unless the setting is increased to some degree. The guideline is as indicated in the following expression:

Speed integral compensation	2000 to 3000	
setting(ms)	Speed control gain 2 setting/	(1+ratio of load inertia moment to
		servo motor inertia moment setting $\times 0.1$)

(2) For position control

(a) Parameters

The following parameters are used for gain adjustment:

Parameter No.	Abbreviation	Name
6	PG1	Position control gain 1
34	GD2	Ratio of load inertia moment to servo motor inertia moment
37	VG2	Speed control gain 2
38	VIC	Speed integral compensation

(b) Adjustment procedure

Step	Operation	Description
1	Set an estimated value to the ratio of load inertia moment to servo motor inertia moment (parameter No. 34).	
2	Set a slightly smaller value to the position control gain 1 (parameter No. 6).	
3	Increase the speed control gain 2 (parameter No. 37) within the vibration- and unusual noise-free range, and return slightly if vibration takes place.	
4	Decrease the speed integral compensation (parameter No. 38) within the vibration-free range, and return slightly if vibration takes place.	Decrease the time constant of the speed integral compensation.
5	Increase the position control gain 1 (parameter No. 6).	Increase the position control gain.
6	If the gains cannot be increased due to mechanical system resonance or the like and the desired response cannot be achieved, response may be increased by suppressing resonance with adaptive vibration suppression control or machine resonance suppression filter and then executing steps 3 to 5.	Refer to Section 8.1.
7	While checking the settling characteristic and rotational status, fine-adjust each gain.	Fine adjustment

7. GENERAL GAIN ADJUSTMENT

(c) Adjustment description

1) Position control gain 1 (parameter No. 6)

This parameter determines the response level of the position control loop. Increasing position control gain 1 improves trackability to a position command but a too high value will make overshooting liable to occur at the time of settling.

 $\frac{\text{Position control}}{\text{gain 1 guideline}} \leq \frac{\text{Speed control gain 2 setting}}{(1+\text{ratio of load inertia moment to servo motor inertia moment})} \times \left(\frac{1}{3} \text{ to } \frac{1}{5}\right)$

2) Speed control gain 2 (VG2: parameter No. 37)

This parameter determines the response level of the speed control loop. Increasing this value enhances response but a too high value will make the mechanical system liable to vibrate. The actual response frequency of the speed loop is as indicated in the following expression:

 $\frac{\text{Speed loop response}}{\text{frequency(Hz)}} = \frac{\text{Speed control gain 2 setting}}{(1 + \text{ratio of load inertia moment to servo motor inertia moment)} \times 2\pi}$

3) Speed integral compensation (parameter No. 38)

To eliminate stationary deviation against a command, the speed control loop is under proportional integral control. For the speed integral compensation, set the time constant of this integral control. Increasing the setting lowers the response level. However, if the load inertia moment ratio is large or the mechanical system has any vibratory element, the mechanical system is liable to vibrate unless the setting is increased to some degree. The guideline is as indicated in the following expression:

Speed integral $\geq \frac{2000 \text{ to } 3000}{\text{Speed control gain 2 setting/ (1+ ratio of load inertia moment to servo motor inertia moment 2 setting <math>\times$ 0.1)

7.4 Interpolation mode

The interpolation mode is used to match the position control gains of the axes when performing the interpolation operation of servo motors of two or more axes for an X-Y table or the like. In this mode, the position control gain 2 and speed control gain 2 which determine command trackability are set manually and the other parameter for gain adjustment are set automatically.

(1) Parameter

(a) Automatically adjusted parameters

The following parameters are automatically adjusted by auto tuning.

Parameter No.	Abbreviation	Name
34	GD2	Ratio of load inertia moment to servo motor inertia moment
35	PG2	Position control gain 2
37	VG2	Speed control gain 2
38	VIC	Speed integral compensation

(b) Manually adjusted parameters

The following parameters are adjustable manually.

Parameter No.	Abbreviation	Name
6	PG1	Position control gain 1
36	VG1	Speed control gain 1

(2) Adjustment procedure

Step	Operation	Description
1	Set 15Hz (parameter No. 2: 010 \square) as the machine resonance frequency of response in the auto tuning mode 1.	Select the auto tuning mode 1.
2	During operation, increase the response level setting (parameter No. 2), and return the setting if vibration occurs.	Adjustment in auto tuning mode 1.
3	Check the values of position control gain 1 (parameter No. 6) and speed control gain 1 (parameter No. 36).	Check the upper setting limits.
4	Set the interpolation mode (parameter No. 2: 000□).	Select the interpolation mode.
5	Using the position control gain 1 value checked in step 3 as the guideline of the upper limit, set in PG1 the value identical to the position loop gain of the axis to be interpolated.	
6	Using the speed control gain 1 value checked in step 3 as the guideline of the upper limit, look at the rotation status and set in speed control gain 1 the value three or more times greater than the position control gain 1 setting.	
7	Looking at the interpolation characteristic and rotation status, fine-adjust the gains and response level setting.	Fine adjustment.

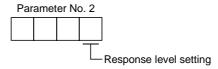
(3) Adjustment description

(a) Position control gain 1 (parameter No.6)

This parameter determines the response level of the position control loop. Increasing position control gain 1 improves trackability to a position command but a too high value will make overshooting liable to occur at the time of settling. The droop pulse value is determined by the following expression.

Droop pulse value (pulse) =
$$\frac{\frac{\text{Rotation speed (r/min)}}{60} \times 131,072 \text{(pulse)}}{\text{Position control gain 1 setting}}$$

(b) Speed control gain 1 (parameter No. 36)

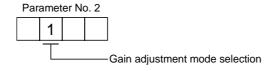

Set the response level of the speed loop of the model. Make setting using the following expression as a guideline.

Speed control gain 1 setting \geq Position control gain 1 setting \times 3

7.5 Differences in auto tuning between MELSERVO-J2 and MELSERVO-J2-Super

7.5.1 Response level setting

To meet higher response demands, the MELSERVO-J2-Super series has been changed in response level setting range from the MELSERVO-J2 series. The following table lists comparison of the response level setting.



MELS	SERVO-J2 series	MELSERVO-J2-Super series		
Set value	Machine resonance frequency	Set value	Machine resonance frequency guideline	
		1	15Hz	
1	20Hz	2	20Hz	
		3	25Hz	
		4	30Hz	
		5	35Hz	
2	40Hz	6	45Hz	
		7	55Hz	
3	60Hz	8	70Hz	
4	80Hz	9	85Hz	
5	100Hz	A	105Hz	
		В	130Hz	
		C	160Hz	
		D	200Hz	
		E	240Hz	
		F	300Hz	

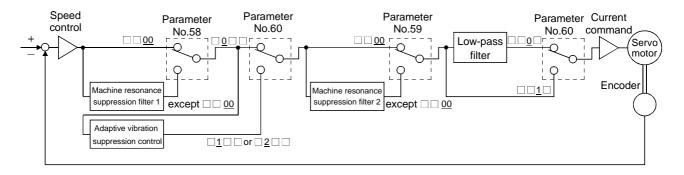
Note that because of a slight difference in gain adjustment pattern, response may not be the same if the resonance frequency is set to the same value.

7.5.2 Auto tuning selection

The MELSERVO-J2-Super series has an addition of the load inertia moment ratio fixing mode. It also has the addition of the manual mode 1 which permits manual adjustment with three parameters.

Gain adjustment mode		Auto tu	ining selection	Domostro	
Gain ad	justment mode	MELSERVO-J2 series MELSERVO-J2-Super series		Remarks	
Interpolation	mode	0	0	Position control gain 1 is fixed.	
	Auto tuning mode 1	1	1	Ordinary auto tuning	
Auto tuning	Auto tuning mode 2		2	Estimation of load inertia moment ratio stopped. Response level setting valid.	
Auto tuning	Manual mode 1		3	Simple manual adjustment	
invalid	Manual mode 2	2	4	Manual adjustment of all gains	

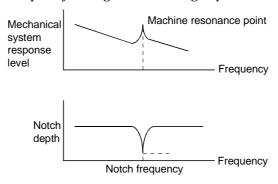
8. SPECIAL ADJUSTMENT FUNCTIONS

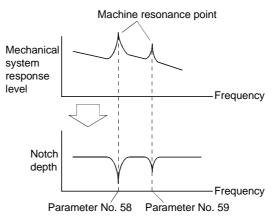

POINT

• The functions given in this chapter need not be used generally. Use them if you are not satisfied with the machine status after making adjustment in the methods in Chapter 7.

If a mechanical system has a natural resonance point, increasing the servo system response level may cause the mechanical system to produce resonance (vibration or unusual noise) at that resonance frequency.

Using the machine resonance suppression filter and adaptive vibration suppression control functions can suppress the resonance of the mechanical system.


8.1 Function block diagram

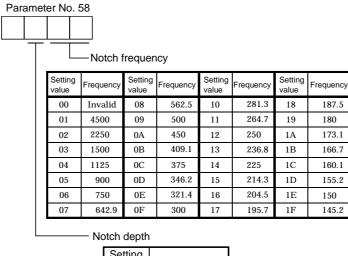

8.2 Machine resonance suppression filter

(1) Function

The machine resonance suppression filter is a filter function (notch filter) which decreases the gain of the specific frequency to suppress the resonance of the mechanical system. You can set the gain decreasing frequency (notch frequency) and gain decreasing depth.

You can use the machine resonance suppression filter 1 (parameter No. 58) and machine resonance suppression filter 2 (parameter No. 59) to suppress the vibration of two resonance frequencies. Note that if adaptive vibration suppression control is made valid, the machine resonance suppression filter 1 (parameter No. 58) is made invalid.

POINT


• The machine resonance suppression filter is a delay factor for the servo system. Hence, vibration may increase if you set a wrong resonance frequency or a too deep notch.

(2) Parameters

(a) Machine resonance suppression filter 1 (parameter No. 58)

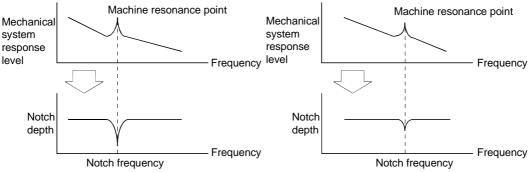
Set the notch frequency and notch depth of the machine resonance suppression filter 1 (parameter No. 58)

When you have made adaptive vibration suppression control selection (parameter No. 60) "valid" or "held", make the machine resonance suppression filter 1 invalid (parameter No. 58: 0000).

Setting value	Depth (Gain)
0	Deep (-40dB)
1	↑ (–14dB)
2	↓ (-8dB)
3	Shallow(-4dB)

POINT

- If the frequency of machine resonance is unknown, decrease the notch frequency from higher to lower ones in order. The optimum notch frequency is set at the point where vibration is minimal.
- A deeper notch has a higher effect on machine resonance suppression but increases a phase delay and may increase vibration.
- The machine characteristic can be grasped beforehand by the machine analyzer on the MR Configurator (servo configuration software). This allows the required notch frequency and depth to be determined.
- Resonance may occur if parameter No. 58 59 is used to select a close notch frequency and set a deep notch.

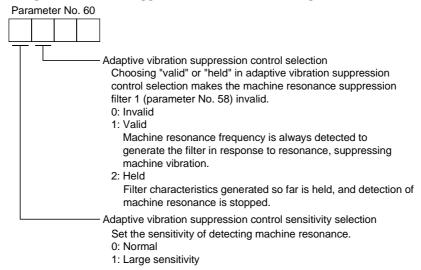

(b) Machine resonance suppression filter 2 (parameter No. 59)

The setting method of machine resonance suppression filter 2 (parameter No. 59) is the same as that of machine resonance suppression filter 1 (parameter No. 58). However, the machine resonance suppression filter 2 can be set independently of whether adaptive vibration suppression control is valid or invalid.

8.3 Adaptive vibration suppression control

(1) Function

Adaptive vibration suppression control is a function in which the servo amplifier detects machine resonance and sets the filter characteristics automatically to suppress mechanical system vibration. Since the filter characteristics (frequency, depth) are set automatically, you need not be conscious of the resonance frequency of a mechanical system. Also, while adaptive vibration suppression control is valid, the servo amplifier always detects machine resonance, and if the resonance frequency changes, it changes the filter characteristics in response to that frequency.


When machine resonance is large and frequency is low When machine resonance is small and frequency is high

POINT

- The machine resonance frequency which adaptive vibration suppression control can respond to is about 150 to 500Hz. Adaptive vibration suppression control has no effect on the resonance frequency outside this range. Use the machine resonance suppression filter for the machine resonance of such frequency.
- Adaptive vibration suppression control may provide no effect on a mechanical system which has complex resonance characteristics or which has too large resonance.
- Under operating conditions in which sudden disturbance torque is imposed during operation, the detection of the resonance frequency may malfunction temporarily, causing machine vibration. In such a case, set adaptive vibration suppression control to be "held" (parameter No. $60: \Box 2 \Box \Box$) to fix the characteristics of the adaptive vibration suppression control filter.

(2) Parameters

The operation of adaptive vibration suppression control selection (parameter No.60).

POINT

- Adaptive vibration suppression control is factory-set to be invalid (parameter No. 60: 0000).
- Setting the adaptive vibration suppression control sensitivity can change the sensitivity of detecting machine resonance. Setting of "large sensitivity" detects smaller machine resonance and generates a filter to suppress machine vibration. However, since a phase delay will also increase, the response of the servo system may not increase.

8.4 Low-pass filter


(1) Function

When a ballscrew or the like is used, resonance of high frequency may occur as the response level of the servo system is increased. To prevent this, the low-pass filter is factory-set to be valid for a torque command. The filter frequency of this low-pass filter is automatically adjusted to the value in the following expression:

 $Filter\ frequency(Hz) = \frac{Speed\ control\ gain\ 2\ setting\times 10}{2\,\pi\times (1+\ Ratio\ of\ load\ inertia\ moment\ to\ servo\ motor\ inertia\ moment\ setting\times 0.1)}$

(2) Parameter

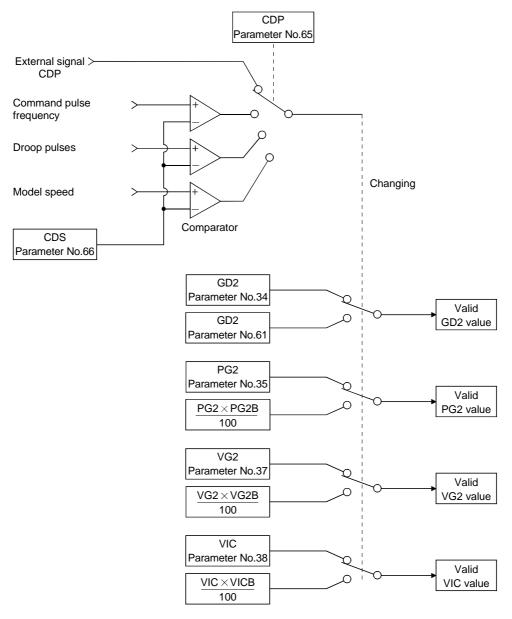
Set the operation of the low-pass filter (parameter No. 60.)

POINT

• In a mechanical system where rigidity is extremely high and resonance is difficult to occur, setting the low-pass filter to be "invalid" may increase the servo system response level to shorten the settling time.

8.5 Gain changing function

This function can change the gains. You can change between gains during rotation and gains during stop or can use an external signal to change gains during operation.


8.5.1 Applications

This function is used when:

- (1) You want to increase the gains during servo lock but decrease the gains to reduce noise during rotation.
- (2) You want to increase the gains during settling to shorten the stop settling time.
- (3) You want to change the gains using an external signal to ensure stability of the servo system since the load inertia moment ratio varies greatly during a stop (e.g. a large load is mounted on a carrier).

8.5.2 Function block diagram

The valid control gains PG2, VG2, VIC and GD2 of the actual loop are changed according to the conditions selected by gain changing selection CDP (parameter No. 65) and gain changing condition CDS (parameter No. 66).

8.5.3 Parameters

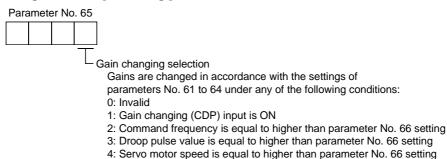
When using the gain changing function, always set " $\Box\Box 4\Box$ " in parameter No.2 (auto tuning) to choose the manual mode of the gain adjustment modes. The gain changing function cannot be used in the auto tuning mode.

Parameter No.	Abbrevi ation	Name	Unit	Description
6	PG1	Position control gain 1	rad/s	Position and speed gains of a model used to set the response
36	VG1	Speed control gain 1	rad/s	level to a command. Always valid.
34	GD2	Ratio of load inertia moment to	0.1	Control parameters before changing
34	GDL	servo motor inertia moment	times	
35	PG2	Position control gain 2	rad/s	
37	VG2	Speed control gain 2	rad/s	
38	VIC	Speed integral compensation	ms	
61	GD2B	Ratio of load inertia moment to	0.1	Used to set the ratio of load inertia moment to servo motor
01	GDZB	servo motor inertia moment 2	times	inertia moment after changing.
62	PG2B	Position control gain 2 changing	%	Used to set the ratio (%) of the after-changing position
02	r G&D	ratio	/0	control gain 2 to position control gain 2.
63	VG2B	Speed control gain 2 changing	%	Used to set the ratio (%) of the after-changing speed control
03	VGLD	ratio	70	gain 2 to speed control gain 2.
64	VICB	Speed integral compensation	%	Used to set the ratio (%) of the after-changing speed integral
04	VICD	changing ratio	70	compensation to speed integral compensation.
65	CDP	Gain changing selection		Used to select the changing condition.
			kpps	Used to set the changing condition values.
66	CDS	Gain changing condition	pulse	
			r/min	
67	CDT	Gain changing time constant	ms	You can set the filter time constant for a gain change at
07	CD1	Gain changing time tonstant	1113	changing.

(1) Parameters No. 6, 34 to 38

These parameters are the same as in ordinary manual adjustment. Gain changing allows the values of ratio of load inertia moment to servo motor inertia moment, position control gain 2, speed control gain 2 and speed integral compensation to be changed.

- (2) Ratio of load inertia moment to servo motor inertia moment 2 (GD2B: parameter No. 61) Set the ratio of load inertia moment to servo motor inertia moment after changing. If the load inertia moment ratio does not change, set it to the same value as ratio of load inertia moment to servo motor inertia moment (parameter No. 34).
- (3) Position control gain 2 changing ratio (parameter No. 62), speed control gain 2 changing ratio (parameter No. 63), speed integral compensation changing ratio (parameter No. 64)


Set the values of after-changing position control gain 2, speed control gain 2 and speed integral compensation in ratio (%). 100% setting means no gain change.

For example, at the setting of position control gain 2 = 100, speed control gain 2 = 2000, speed integral compensation = 20 and position control gain 2 changing ratio = 180%, speed control gain 2 changing ratio = 150% and speed integral compensation changing ratio = 80%, the after-changing values are as follows:

Position control gain 2 = Position control gain 2 \times Position control gain 2 changing ratio /100=180rad/s Speed control gain 2 = Speed control gain 2 \times Speed control gain 2 changing ratio /100 = 3000rad/s Speed integral compensation = Speed integral compensation \times Speed integral compensation changing ratio /100 = 16ms

(4) Gain changing selection (parameter No. 65)

Used to set the gain changing condition. Choose the changing condition in the first digit. If you set "1" here, you can use the gain changing (CDP) external input signal for gain changing. The gain changing (CDP) can be assigned to the pins using parameters No. 43 to 48.

(5) Gain changing condition (parameter No. 66)

When you selected "command frequency", "droop pulses" or "servo motor speed" in gain changing selection (parameter No.65), set the gain changing level.

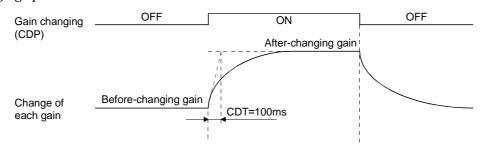
The setting unit is as follows:

Gain changing condition	Unit
Command frequency	kpps
Droop pulses	pulse
Servo motor speed	r/min

(6) Gain changing time constant (parameter No. 67)

You can set the primary delay filter to each gain at gain changing. This parameter is used to suppress shock given to the machine if the gain difference is large at gain changing, for example.

8.5.4 Gain changing operation

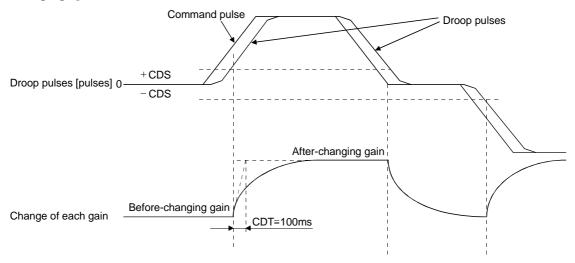

This operation will be described by way of setting examples.

(1) When you choose changing by external input

(a) Setting

Parameter No.	Abbreviation	Name	Setting	Unit
6	PG1	Position control gain 1	100	rad/s
36	VG1	Speed control gain 1	1000	rad/s
34	GD2	Ratio of load inertia moment to servo motor inertia moment	4	0.1 times
35	PG2	Position control gain 2	120	rad/s
37	VG2	Speed control gain 2	3000	rad/s
38	VIC	Speed integral compensation	20	ms
61	GD2B	Ratio of load inertia moment to servo motor inertia moment 2	100	0.1 times
62	PG2B	Position control gain 2 changing ratio	70	%
63	VG2B	Speed control gain 2 changing ratio	133	%
64	VICB	Speed integral compensation changing ratio	250	%
65	CDP	Gain changing selection	0001 (Changed by ON/OFF of pin CN1A-8)	
67	CDT	Gain changing time constant	100	ms

(b) Changing operation


Position control gain 1			100		
Speed control gain 1			1000		
Ratio of load inertia moment to servo motor inertia moment	4.0	\rightarrow	10.0	\rightarrow	4.0
Position control gain 2	120	\rightarrow	84	\rightarrow	120
Speed control gain 2	3000	\rightarrow	4000	\rightarrow	3000
Speed integral compensation	20	\rightarrow	50	\rightarrow	20

(2) When you choose changing by droop pulses

(a) Setting

Parameter No.	Abbreviation	Name	Setting	Unit
6	PG1	Position control gain 1	100	rad/s
36	VG1	Speed control gain 1	1000	rad/s
34	GD2	Ratio of load inertia moment to servo motor inertia moment	40	0.1 times
35	PG2	Position control gain 2	120	rad/s
37	VG2	Speed control gain 2	3000	rad/s
38	VIC	Speed integral compensation	20	ms
61	GD2B	Ratio of load inertia moment to servo motor inertia moment 2	100	0.1 times
62	PG2B	Position control gain 2 changing ratio	70	%
63	VG2B	Speed control gain 2 changing ratio	133	%
64	VICB	Speed integral compensation changing ratio	250	%
65	CDP	Gain changing selection	0003 (Changed by droop pulses)	
66	CDS	Gain changing condition	50	pulse
67	CDT	Gain changing time constant	100	ms

(b) Changing operation

Position control gain 1		100					
Speed control gain 1		1000					
Ratio of load inertia moment to servo motor inertia moment	4.0	\rightarrow	10.0	\rightarrow	4.0	\rightarrow	10.0
Position control gain 2	120	\rightarrow	84	\rightarrow	120	\rightarrow	84
Speed control gain 2	3000	\rightarrow	4000	\rightarrow	3000	\rightarrow	4000
Speed integral compensation	20	\rightarrow	50	\rightarrow	20	\rightarrow	50

9. INSPECTION

- Before starting maintenance and/or inspection, make sure that the charge lamp is off more than 15 minutes after power-off. Then, confirm that the voltage is safe in the tester or the like. Otherwise, you may get an electric shock.
- Any person who is involved in inspection should be fully competent to do the work.
 Otherwise, you may get an electric shock. For repair and parts replacement, contact your safes representative.

POINT

- Do not test the servo amplifier with a megger (measure insulation resistance), or it may become faulty.
- Do not disassemble and/or repair the equipment on customer side.

(1) Inspection

It is recommended to make the following checks periodically:

- (a) Check for loose terminal block screws. Retighten any loose screws.
- (b) Check the cables and the like for scratches and cracks. Perform periodic inspection according to operating conditions.

(2) Life

The following parts must be changed periodically as listed below. If any part is found faulty, it must be changed immediately even when it has not yet reached the end of its life, which depends on the operating method and environmental conditions. For parts replacement, please contact your sales representative.

Part name		Life guideline
	Smoothing capacitor	10 years
	Relay	Number of power-on and number of
Servo amplifier	Ivelay	emergency stop times : 100,000 times
	Cooling fan	10,000 to 30,000hours (2 to 3 years)
	Absolute position battery	Refer to Section 15.2

(a) Smoothing capacitor

Affected by ripple currents, etc. and deteriorates in characteristic. The life of the capacitor greatly depends on ambient temperature and operating conditions. The capacitor will reach the end of its life in 10 years of continuous operation in normal air-conditioned environment.

(b) Relays

Their contacts will wear due to switching currents and contact faults occur. Relays reach the end of their life when the cumulative number of power-on and emergency stop times is 100,000, which depends on the power supply capacity.

(c) Servo amplifier cooling fan

The cooling fan bearings reach the end of their life in 10,000 to 30,000 hours. Normally, therefore, the fan must be changed in a few years of continuous operation as a guideline.

It must also be changed if unusual noise or vibration is found during inspection.

MEMO		
_		

10. TROUBLESHOOTING

10.1 Trouble at start-up

CAUTION

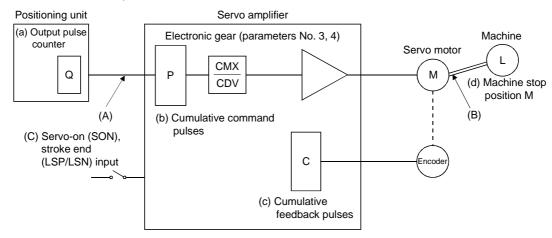
• Excessive adjustment or change of parameter setting must not be made as it will make operation instable.

POINT

• Using the MR Configurator (servo configuration software), you can refer to unrotated servo motor reasons, etc.

The following faults may occur at start-up. If any of such faults occurs, take the corresponding action.

10.1.1 Position control mode


(1) Troubleshooting

No.	Start-up sequence	Fault	Investigation	Possible cause	Reference
1	Power on	LED is not lit.LED flickers.	Not improved if connectors CN1A, CN1B, CN2 and CN3 are disconnected.	 Power supply voltage fault Servo amplifier is faulty. 	
			Improved when connectors CN1A and CN1B are disconnected.	Power supply of CNP1 cabling is shorted.	
			Improved when connector CN2 is disconnected.	 Power supply of encoder cabling is shorted. Encoder is faulty. 	
			Improved when connector CN3 is disconnected.	Power supply of CN3 cabling is shorted.	
		Alarm occurs.	Refer to Section 10.2 and rem	ove cause.	Section 10.2
2	Switch on servo-on	Alarm occurs.	Refer to Section 10.2 and rem	ove cause.	Section 10.2
	(SON).	Servo motor shaft is not servo-locked (is free).	 Check the display to see if the servo amplifier is ready to operate. Check the external I/O signal indication to see if the servo-on (SON) is ON. 	Servo-on (SON) is not input. (Wiring mistake) 2. 24VDC power is not supplied to COM.	Section 6.6
3	Enter input command. (Test operation)	Servo motor does not rotate.	Check cumulative command pulses.	1. Wiring mistake (a) For open collector pulse train input, 24VDC power is not supplied to OPC. (b) LSP and LSN are not on. 2. No pulses is input.	Section 6.2
		Servo motor run in reverse direction.		Mistake in wiring to controller. Mistake in setting of parameter No. 54.	Chapter 5

10. TROUBLESHOOTING

No.	Start-up sequence	Fault	Investigation	Possible cause	Reference
4	Gain adjustment	Rotation ripples	Make gain adjustment in the	Gain adjustment fault	Chapter 7
		(speed fluctuations)	following procedure:		
		are large at low	1. Increase the auto tuning		
		speed.	response level.		
			2. Repeat acceleration and		
			deceleration several times		
			to complete auto tuning.		
		Large load inertia	If the servo motor may be	Gain adjustment fault	Chapter 7
		moment causes the	run with safety, repeat		
		servo motor shaft to	acceleration and		
		oscillate side to side.	deceleration several times to		
			complete auto tuning.		
5	Cyclic operation	Position shift occurs	Confirm the cumulative	Pulse counting error, etc.	(2) in this
			command pulses, cumulative	due to noise.	section
			feedback pulses and actual		
			servo motor position.		

(2) How to find the cause of position shift

When a position shift occurs, check (a) output pulse counter, (b) cumulative command pulse display, (c) cumulative feedback pulse display, and (d) machine stop position in the above diagram.

(A), (B) and (C) indicate position shift causes. For example, (A) indicates that noise entered the wiring between positioning unit and servo amplifier, causing pulses to be mis-counted.

In a normal status without position shift, there are the following relationships:

- 1) Q = P (positioning unit's output counter = servo amplifier's cumulative command pulses)
- 2) P· CMX(parameter No.3) CDV(parameter No.4)
 - = C (cumulative command pulses \times electronic gear = cumulative feedback pulses)
- 3) C $\Delta \ell = M$ (cumulative feedback pulses \times travel per pulse = machine position)

Check for a position shift in the following sequence:

1) When $Q \neq P$

Noise entered the pulse train signal wiring between positioning unit and servo amplifier, causing pulses to be miss-counted. (Cause A)

Make the following check or take the following measures:

- Check how the shielding is done.
- Change the open collector system to the differential line driver system.
- Run wiring away from the power circuit.
- Install a data line filter. (Refer to (2)(a) Section 13.2.6.)

2) When
$$P \cdot \frac{CMX}{CDV} \neq C$$

During operation, the servo-on (SON) or forward/reverse rotation stroke end was switched off or the clear (CR) and the reset (RES) switched on. (Cause C)

If a malfunction may occur due to much noise, increase the input filter setting (parameter No. 1).

3) When $C \cdot \Delta \ell \neq M$

Mechanical slip occurred between the servo motor and machine. (Cause B)

10.1.2 Speed control mode

No.	Start-up sequence	Fault	Investigation	Possible cause	Reference
1	Power on	• LED is not lit.	Not improved if connectors	1. Power supply voltage fault	\
		• LED flickers.	CN1A, CN1B, CN2 and CN3	2. Servo amplifier is faulty.	\
			are disconnected.		\
			Improved when connectors	Power supply of CN1 cabling is	\
			CN1A and CN1B are	shorted.	\
			disconnected.		\
			Improved when connector	1. Power supply of encoder	\
			CN2 is disconnected.	cabling is shorted.	\
				2. Encoder is faulty.	\
			Improved when connector	Power supply of CN3 cabling is	\
			CN3 is disconnected.	shorted.	
		Alarm occurs.	Refer to Section 10.2 and rem		Section 10.2
2	Switch on servo-on	Alarm occurs.	Refer to Section 10.2 and rem		Section 10.2
	(SON).	Servo motor shaft is	1. Check the display to see if	1. Servo-on (SON) is not input.	Section 6.6
		not servo-locked	the servo amplifier is	(Wiring mistake)	
		(is free).	ready to operate.	2. 24VDC power is not	
			2. Check the external I/O	supplied to COM.	
			signal indication to see if		
			the servo-on (SON) is ON.		
3	Switch on forward	Servo motor does	Call the status display and	Analog speed command is 0V.	Section 6.2
	rotation start (ST1)	not rotate.	check the input voltage of		
	or reverse rotation		the analog speed command		
	start (ST2).		(VC).	I CD I CN CT1 CT0 ! ff	C + 0 0
			Call the external I/O signal	LSP, LSN, ST1 or ST2 is off.	Section 6.6
			display and check the ON/OFF status of the input		
			signal.		
			Check the internal speed	Set value is 0.	(1), Section
			commands 1 to 7	Set value is 0.	5.1.2
			(parameters No. 8 to 10 · 72		2,2,1,2
			to 75).		
			Check the internal torque	Torque limit level is too low as	
			limit 1 (parameter No. 28).	compared to the load torque.	
			When the analog torque	Torque limit level is too low as	
			limit (TLA) is usable, check	compared to the load torque.	
			the input voltage on the		
			status display.		
4	Gain adjustment	Rotation ripples	Make gain adjustment in the	Gain adjustment fault	Chapter 7
		(speed fluctuations)	following procedure:		
		are large at low	1. Increase the auto tuning		
		speed.	response level.		
			2. Repeat acceleration and		
			deceleration several		
			times to complete auto		
			tuning.		
		Large load inertia	If the servo motor may be	Gain adjustment fault	Chapter 7
		moment causes the	run with safety, repeat		
		servo motor shaft to	acceleration and		
		oscillate side to side.	deceleration several times to		
	j	1	complete auto tuning.	l	

10.1.3 Torque control mode

No.	Start-up sequence	Fault	Investigation	Possible cause	Reference
1	Power on	LED is not lit.LED flickers.	Not improved if connectors CN1A, CN1B, CN2 and CN3 are disconnected.	 Power supply voltage fault Servo amplifier is faulty. 	
			Improved when connectors CN1A and CN1B are disconnected.	Power supply of CN1 cabling is shorted.	
			Improved when connector CN2 is disconnected.	 Power supply of encoder cabling is shorted. Encoder is faulty. 	
			Improved when connector CN3 is disconnected.	Power supply of CN3 cabling is shorted.	
		Alarm occurs.	Refer to Section 10.2 and rem	ove cause.	Section 10.2
2	Switch on servo-on	Alarm occurs.	Refer to Section 10.2 and rem	ove cause.	Section 10.2
	(SON).	Servo motor shaft is free.	Call the external I/O signal display and check the ON/OFF status of the input signal.	Servo-on (SON) is not input. (Wiring mistake) 2. 24VDC power is not supplied to COM.	Section 6.6
3	Switch on forward rotation start (RS1) or reverse rotation	Servo motor does not rotate.	Call the status display and check the analog torque command (TC).	Analog torque command is 0V.	Section 6.2
	start (RS2).		Call the external I/O signal display and check the ON/OFF status of the input signal.	RS1 or RS2 is off.	Section 6.6
			Check the internal speed limits 1 to 7 (parameters No. 8 to 10 • 72 to 75).	Set value is 0.	(1), Section 5.1.2
			Check the analog torque command maximum output (parameter No. 26) value. Check the internal torque limit 1 (parameter No. 28).	Torque command level is too low as compared to the load torque. Set value is 0.	

10.2 When alarm or warning has occurred

POINT

• Configure up a circuit which will detect the trouble (ALM) and turn off the servo-on (SON) at occurrence of an alarm.

10.2.1 Alarms and warning list

When a fault occurs during operation, the corresponding alarm or warning is displayed. If any alarm or warning has occurred, refer to Section 10.2.2 or 10.2.3 and take the appropriate action. When an alarm occurs, ALM turns off.

Set " $\square\square\square$ " in parameter No. 49 to output the alarm code in ON/OFF status across the corresponding pin and SG. Warnings (AL.92 to AL.EA) have no alarm codes. Any alarm code is output at occurrence of the corresponding alarm. In the normal status, the signals available before alarm code setting (CN1B-19: ZSP, CN1A-18: INP or SA, CN1A-19: RD) are output.

After its cause has been removed, the alarm can be deactivated in any of the methods marked \bigcirc in the alarm deactivation column.

\		(No	te 2) Alarm c	ode		Ala	arm deactivat	ion
$\bigg] \bigg\backslash$	Display	CN1B-19 pin	CN1A-18 pin	CN1A-19 pin	Name	Power OFF→ON	Press "SET" on current alarm screen.	Alarm reset (RES)
	AL.10	0	1	0	Undervoltage	0	0	0
	AL.12	0	0	0	Memory error 1	0		
	AL.13	0	0	0	Clock error	0		
	AL.15	0	0	0	Memory error 2	0		
	AL.16	1	1	0	Encoder error 1	0		
	AL.17	0	0	0	Board error	0		
	AL.19	0	0	0	Memory error 3	0		
	AL.1A	1	1	0	Motor combination error	0		
	AL.20	1	1	0	Encoder error 2	0		
	AL.24	1	0	0	Main circuit error	0		
	AL.25	1	1	0	Absolute position erase	0		
ns	AL.30	0	0	1	Regenerative error	○ (Note 1)	○ (Note 1)	O (Note 1)
Alarms	AL.31	1	0	1	Overspeed	0	0	0
Al	AL.32	1	0	0	Overcurrent	0	0	0
	AL.33	0	0	1	Overvoltage	0		
	AL.35	1	0	1	Command pulse frequency error	0	0	0
	AL.37	0	0	0	Parameter error	0		
	AL.45	0	1	1	Main circuit device overheat	○(Note 1)	O(Note 1)	O(Note 1)
	AL.46	0	1	1	Servo motor overheat	○(Note 1)	○(Note 1)	O(Note 1)
	AL.50	0	1	1	Overload 1	○ (Note 1)	○ (Note 1)	O (Note 1)
	AL.51	0	1	1	Overload 2	○ (Note 1)	○ (Note 1)	○ (Note 1)
	AL.52	1	0	1	Error excessive	0	0	0
	AL.8A	0	0	0	Serial communication time-out error	0	0	0
	AL.8E	0	0	0	Serial communication error	0	0	0
	88888	0	0	0	Watchdog	0		
	AL.92				Open battery cable warning			
	AL.96				Home position setting warning			
	AL.9F				Battery warning			
gs	AL.E0	_			Excessive regenerative warning	Dama avrim et t	l	
niπ	AL.E1				Overload warning	deactivates	he cause of o	ccurrence
Warnings	AL.E3				Absolute position counter warning	automatica		
>	AL.E5			_	ABS time-out warning	automatica	iiy.	
	AL.E6				Servo emergency stop warning]		
	AL.E9				Main circuit off warning			
	AL.EA				ABS servo-on warning			

Note 1. Deactivate the alarm about 30 minutes of cooling time after removing the cause of occurrence.

^{2. 0:} off

^{1:} on

10.2.2 Remedies for alarms

- When any alarm has occurred, eliminate its cause, ensure safety, then reset the alarm, and restart operation. Otherwise, injury may occur.
- If an absolute position erase (AL.25) occurred, always make home position setting again. Otherwise, misoperation may occur.
- As soon as an alarm occurs, turn off Servo-on (SON) and power off the main circuit

POINT

- When any of the following alarms has occurred, always remove its cause and allow about 30 minutes for cooling before resuming operation. If operation is resumed by switching control circuit power off, then on to reset the alarm, the servo amplifier and servo motor may become faulty.
 - Regenerative error (AL.30)
 - Overload 1 (AL.50)
 - Overload 2 (AL.51)
- The alarm can be deactivated by switching power off, then on press the "SET" button on the current alarm screen or by turning on the reset (RES). For details, refer to Section 10.2.1.

When an alarm occurs, the trouble (ALM) switches off and the dynamic brake is operated to stop the servomotor. At this time, the display indicates the alarm No.

The servo motor comes to a stop. Remove the cause of the alarm in accordance with this section. The optional MR Configurator (servo configuration software) may be used to refer to the cause.

Display	Name	Definition	Cause	Action
AL.10	Undervoltage	Power supply voltage dropped. MR-J2S-□A: 160VAC or less MR-J2S-□A1: 83VAC or less	 Power supply voltage is low. There was an instantaneous control power failure of 60ms or longer. Shortage of power supply capacity caused the power supply voltage to drop at start, etc. The bus voltage dropped to 200VDC. Faulty parts in the servo amplifier 	Review the power supply. Change the servo amplifier.
			Checking method Alarm (AL.10) occurs if power is switched on after disconnection of all cables but the control circuit power supply cables.	
AL.12	Memory error 1	RAM, memory fault	Faulty parts in the servo amplifier	Change the servo amplifier.
AL.13	Clock error	Printed board fault	Checking method Alarm (any of AL.11 and AL.13) occurs if power is switched on after disconnection of all cables but the control circuit power supply cables.	

Display	Name	Definition	Cause	Action
AL.15		EEP-ROM fault	1. Faulty parts in the servo amplifier Checking method Alarm (AL.15) occurs if power is switched on after disconnection of all cables but the control circuit power	
			supply cables. 2. The number of write times to EEP-ROM exceeded 100,000.	
AL.16	Encoder error 1	Communication error occurred	1. Encoder connector (CN2) disconnected.	Connect correctly.
		between encoder and servo amplifier.	Encoder fault Encoder cable faulty (Wire breakage or shorted)	Change the servo motor. Repair or change cable.
AL.17	Board error 2	CPU/parts fault	1. Faulty parts in the servo amplifier. Checking method Alarm (AL.17) occurs if power is switched on after disconnection of all cable but the control circuit power supply cable.	Change the servo amplifier.
		The output terminals U, V, W of the servo amplifier and the input terminals U, V, W of the servo motor are not connected.	2. The wiring of U, V, W is disconnected or not connected.	Correctly connect the output terminals U, V, W of the servo amplifier and the input terminals U, V, W of the servo motor.
AL.19	Memory error 3		Faulty parts in the servo amplifier. Checking method Alarm (AL.19) occurs if power is switched on after disconnection of all cable but the control circuit power supply cable.	Change the servo amplifier.
AL.1A	Motor combination error	Wrong combination of servo anplifier and servo motor.	Wrong combination of servo amplifier and servo motor connected.	Use correct combination.
AL.20	Encoder error 2	Communication error occurred between encoder	Encoder connector (CN2) disconnected. Encoder cable faulty	Connect correctly. Repair or change the cable.
		and servo amplifier.	(Wire breakage or shorted) 3. Encoder fault	Change the servo motor.
AL.24	Main circuit error	Ground fault occurred at the servo motor outputs (U,V and W phases) of the servo amplififer.	 Power input wires and servo motor output wires are in contact at main circuit terminal block (TE1). Sheathes of servo motor power cables deteriorated, resulting in ground fault. 	Connect correctly. Change the cable.
			3. Main circuit of servo amplifier failed. Checking method AL.24 occurs if the servo is switched on after disconnecting the U, V, W power cables from the servo amplifier.	Change the servo amplifier.

Absolute position erase Absolute position data in error 1. Reduced voltage of super capacitor and interest with encoder Absolute position data in error 2. Battery voltage low 3. Battery cable or battery is faulty. Always make home position detection system. AL.30 Regenerative Permissible regenerative power of the built-in regenerative brake resistor or regenerative brake option is not connected. Aligh-duty operation or continuous regenerative brake option is not connected. Call the status display and check the regenerative brake option to be exceeded. Call the status display and check the regenerative brake resistor or regenerative brake option faulty. After leaving the alarm oc minutes, switch power off, Always make home position displays make home position of the position encoder is not charged in the absolute position encoder is not charged in the absolute positi	then on again. on setting again. on setting again. curring for a few then on again.
Power was switched on for the first time in the absolute position detection system. AL.30 Regenerative alarm Permissible regenerative power of the built-in regenerative brake resistor or regenerative brake option is exceeded. Al.30 Regenerative prower of the built-in regenerative brake option is exceeded. Al.30 Regenerative brake resistor or regenerative brake option is exceeded. Al.30 Regenerative power of the built-in regenerative brake resistor or regenerative brake option is not connected. Al.4 High-duty operation or continuous regenerative operation caused the permissible regenerative brake option to be exceeded. Checking method Call the status display and check the regenerative load ratio. 4. Power supply voltage is abnormal. MR-J2S-□A1:135VAC or more MR-J2S-□A1:135VAC or more Set correctly. Connect correctly regenerative brake option to be exceeded. Alter leaving the alarm oc minutus, switch power off, Always make home position fall two position or regenerative brake option is not connected. Alter leaving the alarm oc minutus, switch power off, Always make home position fall two position regenerative brake option or	curring for a few then on again.
alarm regenerative power of the built-in regenerative brake resistor or regenerative brake option is exceeded. 3. High-duty operation or continuous regenerative brake option is exceeded. Checking method Call the status display and check the regenerative load ratio. 4. Power supply voltage is abnormal. MR-J2S-□A1:135VAC or more MR-J2S-□A1:135VAC or more 5. Built-in regenerative brake option faulty. Regenerative transistor fault Regenerative transistor fault Checking method Call the status display and check the regenerative load ratio. Checking method Change servo amplifier or brake option faulty. Checking method Change servo amplifier or brake option faulty. Checking method Change servo amplifier or brake option faulty. Checking method Change the servo amplifier or brake option has overheated abnormally. 2. Use the regenerative brake permissible regenerative brake regenerative brake regenerative brake option faulty. Checking method Change the servo amplifier or brake option has overheated abnormally. 2. Use the regenerative brake permissible regenerative brake registor or regenerative brake resistor or regenerative power of the regenerative brake option. Checking method Change the servo amplifier or brake option has overheated abnormally. Change the servo amplifier or brake option has overheated abnormally. Change the servo amplifier or brake option has overheated abnormally. Change the servo amplifier or brake option has overheated abnormally. Change the servo amplifier or brake option has overheated abnormally.	
regenerative brake option is exceeded. regenerative operation caused the permissible regenerative power of the regenerative brake option to be exceeded. Checking method Call the status display and check the regenerative load ratio. 4. Power supply voltage is abnormal. MR-J2S-□A:260VAC or more MR-J2S-□A:135VAC or more 5. Built-in regenerative brake resistor or regenerative brake option faulty. Regenerative transistor fault 6. Regenerative transistor faulty. Change the servo amplified to brake option has overheated abnormally. 2) The alarm occurs even after removal of the built-in	
MR-J2S-□A:260VAC or more MR-J2S-□A1:135VAC or more 5. Built-in regenerative brake resistor or regenerative brake option. Regenerative transistor faulty. Checking method 1) The regenerative brake option has overheated abnormally. 2) The alarm occurs even after removal of the built-in	
option faulty. Regenerative transistor faulty. Checking method 1) The regenerative brake option has overheated abnormally. 2) The alarm occurs even after removal of the built-in	regenerative
regenerative brake option.	er.
AL.31 Overspeed Speed has exceeded the instantaneous permissible speed. Speed has exceeded the permissible exceeded the permissible instantaneous speed frequency. Set command pulses corrected the instantaneous speed frequency. Set command pulses corrected the permissible instantaneous speed frequency. Set command pulses corrected the permissible instantaneous speed frequency. Set command pulses corrected the permissible instantaneous speed frequency. Set command pulses corrected the permissible instantaneous speed frequency. Set command pulses corrected the permissible instantaneous speed frequency. Set command pulses corrected the permissible instantaneous speed frequency. Set command pulses corrected the permissible instantaneous speed frequency. Set command pulses corrected the permissible instantaneous speed frequency. Set command pulses corrected the permissible instantaneous speed frequency.	-
3. Servo system is instable to cause overshoot. 1. Re-set servo gain to pro 2. If servo gain cannot be value: 1) Reduce load inertia mot 2) Reexamine acceleration deceleration time const	set to proper ment ratio; or n/
4. Electronic gear ratio is large (parameters No. 3, 4) 5. Encoder faulty. Change the servo motor.	

Display	Name	Definition	Cause	Action
AL.32	Overcurrent	Current that flew is	1. Short occurred in servo amplifier	Correct the wiring.
		higher than the permissible current of the servo amplifier.	output phases U, V and W. 2. Transistor (IPM) of the servo amplifier faulty. Checking method Alarm (AL.32) occurs if power is switched on after U,V and W are disconnected.	Change the servo amplifier.
			3. Ground fault occurred in servo amplifier output phases U, V and W.	Correct the wiring.
			External noise caused the overcurrent detection circuit to misoperate.	Take noise suppression measures.
		Current higher than the permissible current flew in the regenerative brake transistor. (MR-J2S-500A only)	5. Improper wiring of the regenerative brake option.	Wire the regenerative brake option correctly.
AL.33	Overvoltage	Converter bus voltage exceeded	Regenerative brake option is not used.	Use the regenerative brake option.
		400VDC.	 Though the regenerative brake option is used, the parameter No. 0 setting is " 00 □ □ (not used)". 	Make correct setting.
			Lead of built-in regenerative brake resistor or regenerative brake option is open or disconnected.	Change lead. Connect correctly.
			Regenerative transistor faulty. Wire breakage of built-in regenerative brake resistor or regenerative brake option	Change servo amplifier 1. For wire breakage of built-in regenerative brake resistor, change servo amplifier. 2. For wire breakage of regenerative brake option, change regenerative brake option.
			6. Capacity of built-in regenerative brake resistor or regenerative brake option is insufficient.	Add regenerative brake option or increase capacity.
			7. Power supply voltage high. 8. Ground fault occurred in servo amplifier output phases U, V and W.	Review the power supply. Correct the wiring.
AL.35	Command pulse frequency	Input pulse frequency of the	Pulse frequency of the command pulse is too high.	Change the command pulse frequency to a proper value.
	error	command pulse is	2. Noise entered command pulses.	Take action against noise.
AL.37	Parameter error	too high. Parameter setting is wrong.	3. Command device failure1. Servo amplifier fault caused the parameter setting to be rewritten.	Change the command device. Change the servo amplifier.
	error		Regenerative brake option not used with servo amplifier was selected in parameter No.0.	Set parameter No.0 correctly.
			3. The number of write times to EEP-ROM exceeded 100,000 due to parameter write, etc.	Change the servo amplifier.
			4.The alarm code output (parameter No. 49) was set by the absolute position detection system.	The absolute position detection system and the alarm code output function are exclusive. Set as either one of the two is used.
			5.The alarm code output (parameter No.49) was set with the electromagnetic brake interlock (MBR) assigned to pin CN1B-19.	The signal assignment function of the electromagnetic interlock (MBR) to pin CN1B-19 and the alarm code output function are exclusive. Set as either one of the two is used.

Display	Name	Definition	Cause	Action
AL.45	Main circuit	Main circuit device	Servo amplifier faulty.	Change the servo amplifier.
	device overheat	overheat	2. The power supply was turned on and off continuously by overloaded status.	The drive method is reviewed.
			Air cooling fan of servo amplifier stops.	Exchange the cooling fan or the servo amplifier. Reduce ambient temperature.
AL.46	Servo motor overheat	Servo motor temperature rise	1. Ambient temperature of servo motor is over 40°C (104°F).	Review environment so that ambient temperature is 0 to 40°C (104°F).
		actuated the thermal sensor.	2. Servo motor is overloaded.	Reduce load. Review operation pattern. Use servo motor that provides larger output.
			3. Thermal sensor in encoder is faulty.	Change servo motor.
AL.50	Overload 1	Load exceeded overload protection characteristic of servo amplifier.	Servo amplifier is used in excess of its continuous output current.	Reduce load. Review operation pattern. Use servo motor that provides larger output.
			Servo system is instable and hunting.	 Repeat acceleration/ deceleration to execute auto tuning. Change auto tuning response setting. Set auto tuning to OFF and make gain adjustment manually.
			3. Machine struck something.	Review operation pattern. Install limit switches.
			Wrong connection of servo motor. Servo amplifier's output terminals U, V, W do not match servo motor's input terminals U, V, W.	Connect correctly.
			5. Encoder faulty. Checking method When the servo motor shaft is rotated with the servo off, the cumulative feedback pulses do not vary in proportion to the rotary angle of the shaft but the indication skips or returns midway.	Change the servo motor.
AL.51	Overload 2	Machine collision or the like caused max.	Machine struck something.	Review operation pattern. Install limit switches.
		output current to flow successively for several seconds. Servo motor locked:	2. Wrong connection of servo motor. Servo amplifier's output terminals U, V, W do not match servo motor's input terminals U, V, W.	Connect correctly.
		1s or more During rotation: 2.5s or more	3. Servo system is instable and hunting.	 Repeat acceleration/deceleration to execute auto tuning. Change auto tuning response setting. Set auto tuning to OFF and make gain adjustment manually.
			4. Encoder faulty. Checking method When the servo motor shaft is rotated with the servo off, the cumulative feedback pulses do not vary in proportion to the rotary angle of the shaft but the indication skips or returns midway.	Change the servo motor.

Display	Name	Definition	Cause	Action
AL.52	Error excessive (Note)	The difference between the model position and the actual servomotor	Acceleration/deceleration time constant is too small. Torque limit value (parameter No.28) is too small.	Increase the acceleration/deceleration time constant. Increase the torque limit value.
		position exceeds 2.5 rotations. (Refer to the function block	3. Motor cannot be started due to torque shortage caused by power supply voltage drop.	Review the power supply capacity. Use servo motor which provides larger output.
		diagram in Section	4. Position control gain 1 (parameter No.6) value is small.	Increase set value and adjust to ensure proper operation.
		1.2.)	5. Servo motor shaft was rotated by external force.	When torque is limited, increase the limit value. Reduce load. Use servo motor that provides larger output.
			6. Machine struck something.	Review operation pattern. Install limit switches.
			7. Encoder faulty	Change the servo motor.
			8. Wrong connection of servo motor. Servo amplifier's output terminals U, V, W do not match servo motor's input terminals U, V, W.	Connect correctly.
AL.8A	Serial	RS-232C or RS-422	1. Communication cable breakage.	Repair or change communication cable
	communication time-out error	communication stopped for longer	2. Communication cycle longer than parameter No. 56 setting.	Set correct value in parameter.
		than the time set in parameter No.56.	3. Wrong protocol.	Correct protocol.
AL.8E		Serial communication	Communication cable fault (Open cable or short circuit)	Repair or change the cable.
	error	error occurred between servo amplifier and communication device (e.g. personal computer).	2. Communication device (e.g. personal computer) faulty	Change the communication device (e.g. personal computer).
88888	Watchdog	CPU, parts faulty	Fault of parts in servo amplifier Checking method Alarm (88888) occurs if power is switched on after disconnection of all cables but the control circuit power supply cable.	Change servo amplifier.

Note. The error excessive detection for 2.5 revolutions is available only when the servo amplifier of software version B0 or later is used. For the servo amplifier of software version older than B0, an error excessive alarm occurs when the deviation (deviation counter value) between the instructed position and the actual servo motor position exceeds 10 revolutions.

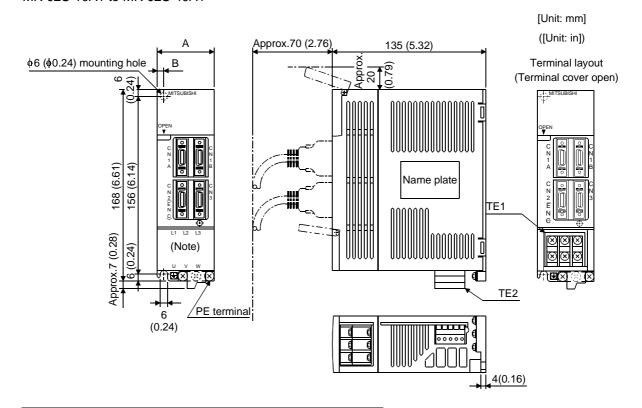
10.2.3 Remedies for warnings

• If an absolute position counter warning (AL.E3) occurred, always make home position setting again. Otherwise, misoperation may occur.

POINT

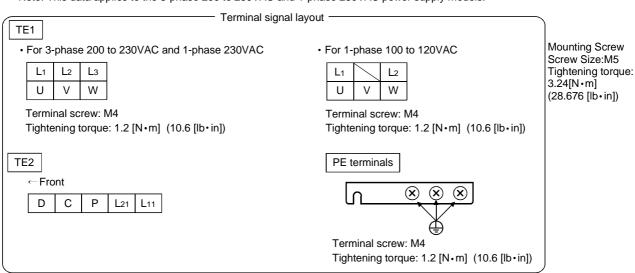
- When any of the following alarms has occurred, do not resume operation by switching power of the servo amplifier OFF/ON repeatedly. The servo amplifier and servo motor may become faulty. If the power of the servo amplifier is switched OFF/ON during the alarms, allow more than 30 minutes for cooling before resuming operation.
 - Excessive regenerative warning (AL.E0)
 - Overload warning 1 (AL.E1)

If Servo emergency stop warning (AL.E6) or ABS servo-on warning (AL.EA) occurs, the servo off status is established. If any other warning occurs, operation can be continued but an alarm may take place or proper operation may not be performed. Use the optional MR Configurator (servo configuration software) to refer to the cause of warning.

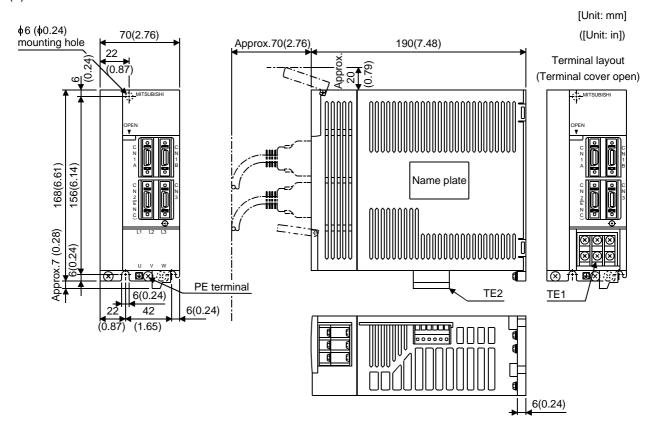

Display	Name	Definition	Cause	Action
AL.92	Open battery	Absolute position	1. Battery cable is open.	Repair cable or changed.
	cable warning	detection system battery voltage is low.	2. Battery voltage supplied from the servo amplifier to the encoder fell to about 3.2V or less. (Detected with the encoder)	Change battery.
AL.96	Home position setting warning	Home position setting could not be made.	Droop pulses remaining are greater than the in-position range setting. Command pulse entered after clearing	Remove the cause of droop pulse occurrence Do not enter command pulse
			of droop pulses.	after clearing of droop pulses.
			3. Creep speed high.	Reduce creep speed.
AL.9F	Battery warning	Voltage of battery for absolute position detection system reduced.	Battery voltage fell to 3.2V or less. (Detected with the servo amplifier)	Change the battery.
AL.E0	Excessive regenerative warning	There is a possibility that regenerative power may exceed permissible regenerative power of built-in regenerative brake resistor or regenerative brake option.	Regenerative power increased to 85% or more of permissible regenerative power of built-in regenerative brake resistor or regenerative brake option. Checking method Call the status display and check regenerative load ratio.	 Reduce frequency of positioning. Change regenerative brake option for the one with larger capacity. Reduce load.
AL.E1	Overload warning	There is a possibility that overload alarm 1 or 2 may occur.	Load increased to 85% or more of overload alarm 1 or 2 occurrence level. Cause, checking method Refer to AL.50,51.	Refer to AL.50, AL.51.
AL.E3	Absolute position counter warning	Absolute position encoder pulses faulty.	1. Noise entered the encoder.	Take noise suppression measures.
			2. Encoder faulty.	Change servo motor.
		The multi-revolution counter value of the absolute position encoder exceeded the maximum revolution range.	3. The movement amount from the home position exceeded a 32767 rotation or - 37268 rotation in succession.	Make home position setting again.

Display	Name	Definition	Cause	Action
AL.E5	ABS time-out		1. PC lader program wrong.	Contact the program.
	warning		2. Reverse rotation start (ST2) • Limiting torque (TLC) improper wiring	Connect properly.
AL.E6	Servo emergency	EMG is off.	External emergency stop was made valid.	Ensure safety and deactivate
	stop warning		(EMG was turned off.)	emergency stop.
AL.E9	warning	Servo-on (SON) was switched on with main circuit power off.		Switch on main circuit power.
AL.EA	ABS	Servo-on (SON) turned on	1. PC ladder program wrong.	1. Correct the program.
		more than 1s after servo amplifier had entered absolute position data transfer mode.	2. Servo-on (SON) improper wiring.	2. Connect properly.

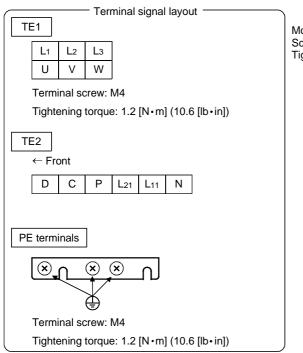
11. OUTLINE DIMENSION DRAWINGS


11.1 Servo amplifiers

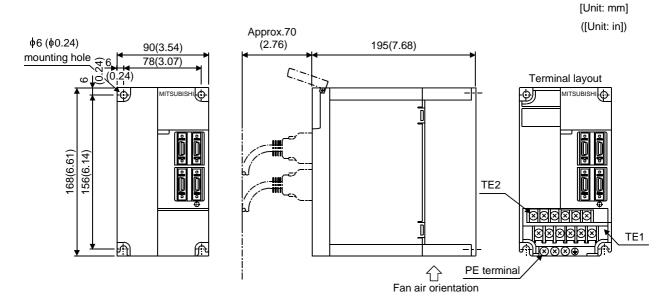
(1) MR-J2S-10A to MR-J2S-60A MR-J2S-10A1 to MR-J2S-40A1



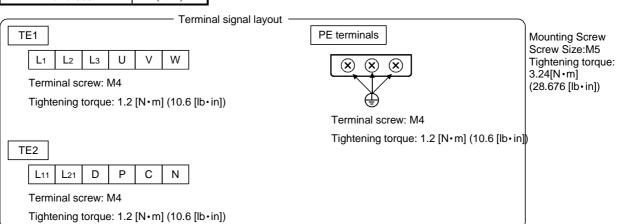
Comus openiifion	Variable dimensions		Mass
Servo amplifier	Α	В	[kg]([lb])
MR-J2S-10A(1)	50 (1.97)	6 (0.24)	0.7 (1.54)
MR-J2S-20A(1)			
MR-J2S-40A(1)	70 (0 70)	00 (0.07)	1 1 (0 40)
MR-J2S-60A	70 (2.76)	22 (0.87)	1.1 (2.43)


Note. This data applies to the 3-phase 200 to 230VAC and 1-phase 230VAC power supply models.

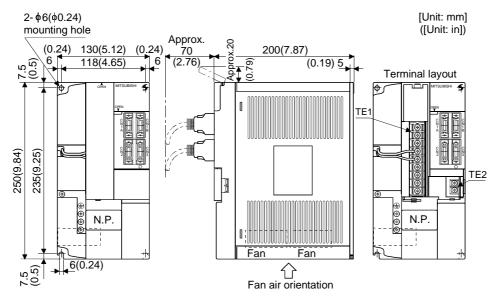
(2) MR-J2S-70A • MR-J2S-100A

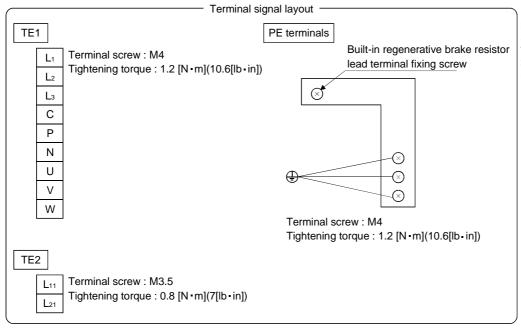


Son/o amplifior	Mass
Servo amplifier	[kg]([lb])
MR-J2S-70A	1.7
MR-J2S-100A	(3.75)

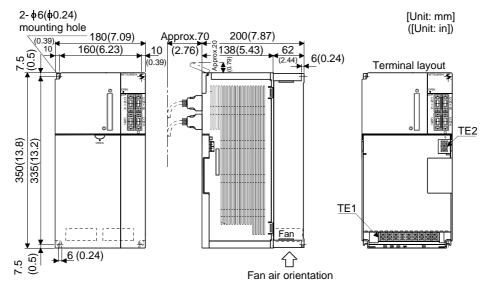


Mounting Screw Screw Size:M5 Tightening torque:3.24[N+m](28.676 [lb+in])

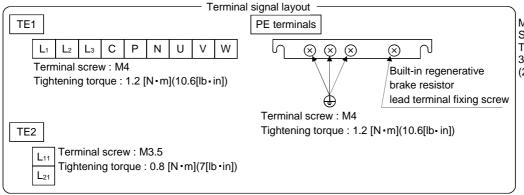

(3) MR-J2S-200A • MR-J2S-350A


Componentifion	Mass
Servo amplifier	[kg]([lb])
MR-J2S-200A	2.0
MR-J2S-350A	(4.41)

(4) MR-J2S-500A

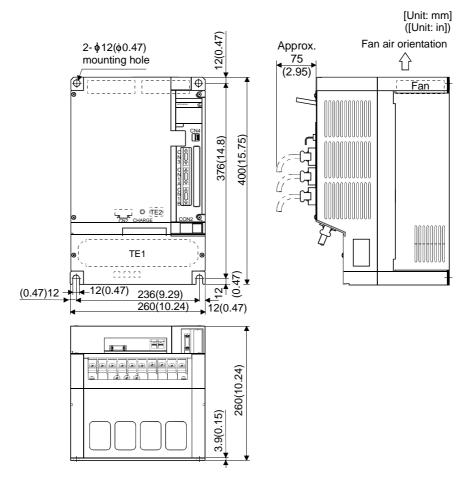


Servo amplifier	Mass [kg]([lb])	
MR-J2S-500A	4.9(10.8)	



Mounting Screw Screw Size:M5 Tightening torque: 3.24[N·m] (28.676 [lb·in])

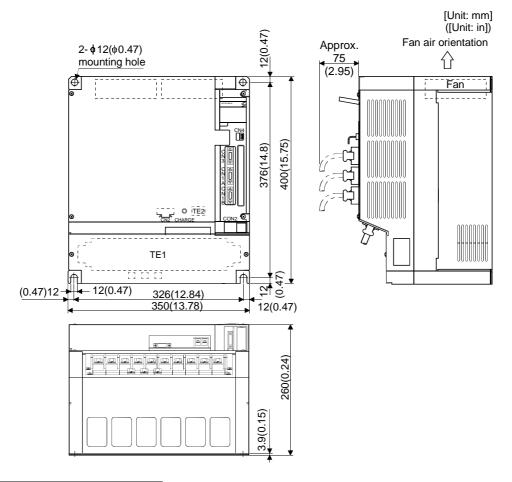
(5) MR-J2S-700A



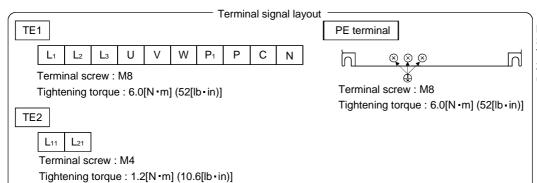
	Mass	
Servo amplifier		
•	[kg]([lb])	
MR-J2S-700A	7.2(15.9)	

Mounting Screw Screw Size:M5 Tightening torque: 3.24[N•m] (28.676 [lb•in])

(6) MR-J2S-11KA • 15KA



Servo amplifier	Mass	
Servo amplinei	[kg]([lb])	
MR-J2S-11KA	15(33.1)	
MR-J2S-15KA	16(35.3)	



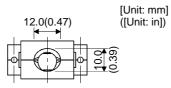
Mounting Screw Screw Size:M10 Tightening torque: 26.5[N·m] (234.545[lb·in])

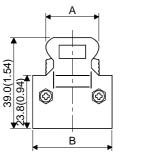
(7) MR-J2S-22KA

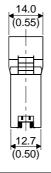
Conto amplifiar	Mass	
Servo amplifier	[kg]([lb])	
MR-J2S-22KA	20(44.1)	

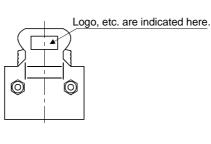
Mounting Screw Screw Size:M10 Tighting torque: 26.5[N·m] (234.545[lb·in])

11.2 Connectors

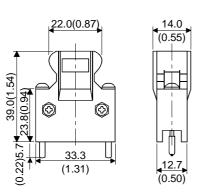

(1) Servo amplifier side

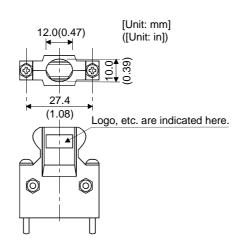

<3M>


(a) Soldered type


Model

Connector : 10120-3000VE Shell kit : 10320-52F0-008

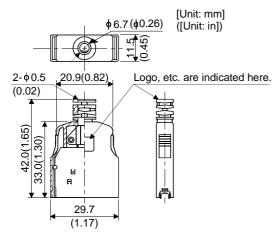

0	Ch all leit	Variable dimensions	
Connector	Shell kit	А	В
10120-3000VE	10320-52F0-008	22.0(0.87)	33.3(1.31)

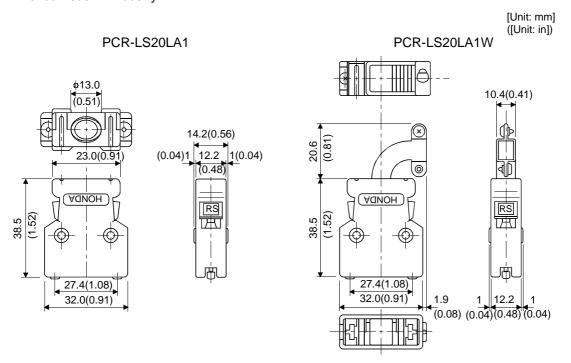

(b) Threaded type

Model

Connector : 10120-3000VE Shell kit : 10320-52A0-008 Note. This is not available as option

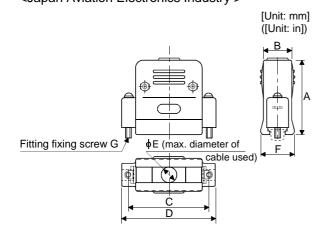
and should be user-prepared.




(c) Insulation displacement type

Model

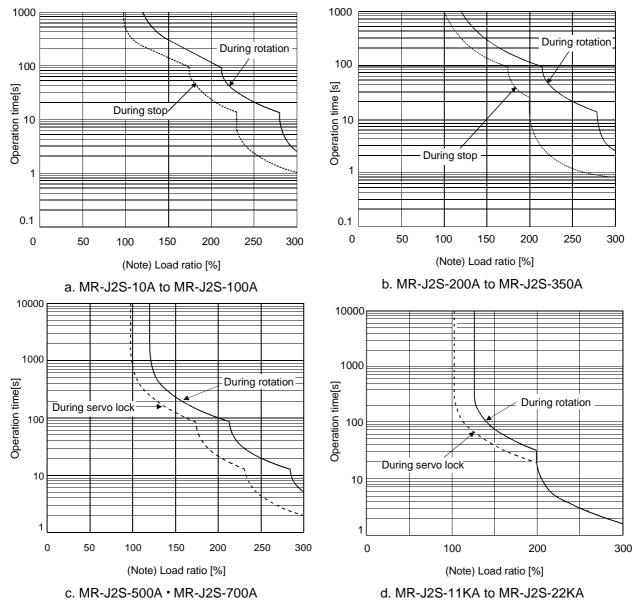
Connector : 10120-6000EL Shell kit : 10320-3210-000


(2) Bus cable connector <Honda Tsushin Industry>

Number of Disc	Model		
Number of Pins	Connector	Case	Crimping terminal
90	PCR-S20FS (soldering type)	PCR-LS20LA1	ELLATE OOOA
20	PCR-S20F (insulation displacement type)	PCR-LS20LA1W	FHAT-002A

Note. PCR-S20F and PCR-LS20LA1W are not options and are to be supplied by the customer.

(3) Communication cable connector <Japan Aviation Electronics Industry >


Typo	А	В	С	D	4 ⊏	F	G
Туре	<u>±</u> 1	<u>±</u> 1	±0.25	<u>±</u> 1	Ψ∟	Reference	G
DE-C1-J6-S6	34.5(1.36)	19(0.75)	24.99(0.98)	33(1.30)	6(0.24)	18(0.71)	#4-40

12. CHARACTERISTICS

12.1 Overload protection characteristics

An electronic thermal relay is built in the servo amplifier to protect the servo motor and servo amplifier from overloads. Overload 1 alarm (AL.50) occurs if overload operation performed is above the electronic thermal relay protection curve shown in any of Figs 12.1. Overload 2 alarm (AL.51) occurs if the maximum current flew continuously for several seconds due to machine collision, etc. Use the equipment on the left-hand side area of the continuous or broken line in the graph.

In a machine like the one for vertical lift application where unbalanced torque will be produced, it is recommended to use the machine so that the unbalanced torque is 70% or less of the rated torque.

Note. If operation that generates torque more than 100% of the rating is performed with an abnormally high frequency in a servo motor stop status (servo lock status) or in a 30r/min or less low-speed operation status, the servo amplifier may fail even when the electronic thermal relay protection is not activated.

Fig 12.1 Electronic thermal relay protection characteristics

12.2 Power supply equipment capacity and generated loss

(1) Amount of heat generated by the servo amplifier

Table 12.1 indicates servo amplifiers' power supply capacities and losses generated under rated load. For thermal design of an enclosure, use the values in Table 12.1 in consideration for the worst operating conditions. The actual amount of generated heat will be intermediate between values at rated torque and servo off according to the duty used during operation. When the servo motor is run at less than the maximum speed, the power supply capacity will be smaller than the value in the table, but the servo amplifier's generated heat will not change.

Table 12.1 Power supply capacity and generated heat per servo amplifier at rated output

Servo amplifier	Servo motor	(Note 1) Power supply	(Not Servo amplifier-g	•	Area required fo	r heat dissipation
,		capacity[kVA]	At rated torque	With servo off	[m²]	[ft²]
	HC-KFS053 · 13	0.3	25	15	0.5	5.4
MR-J2S-10A(1)	HC-MFS053 • 13	0.3	25	15	0.5	5.4
	HC-UFS13	0.3	25	15	0.5	5.4
	HC-KFS23	0.5	25	15	0.5	5.4
MR-J2S-20A(1)	HC-MFS23	0.5	25	15	0.5	5.4
	HC-UFS23	0.5	25	15	0.5	5.4
	HC-KFS43	0.9	35	15	0.7	7.5
MR-J2S-40A(1)	HC-MFS43	0.9	35	15	0.7	7.5
	HC-UFS43	0.9	35	15	0.7	7.5
	HC-SFS52	1.0	40	15	0.8	8.6
MR-J2S-60A	HC-SFS53	1.0	40	15	0.8	8.6
	HC-LFS52	1.0	40	15	0.8	8.6
	HC-KFS73	1.3	50	15	1.0	10.8
MR-J2S-70A	HC-MFS73	1.3	50	15	1.0	10.8
	HC-UFS72 • 73	1.3	50	15	1.0	10.8
	HC-SFS81	1.5	50	15	1.0	10.8
MR-J2S-100A	HC-SFS102 · 103	1.7	50	15	1.0	10.8
	HC-LFS102	1.7	50	15	1.0	10.8
	HC-SFS121	2.1	90	20	1.8	19.4
	HC-SFS201	3.5	90	20	1.8	19.4
	HC-SFS152 · 153	2.5	90	20	1.8	19.4
N. F. TOG 0004	HC-SFS202 · 203	3.5	90	20	1.8	19.4
MR-J2S-200A	HC-RFS103	1.8	50	15	1.0	10.8
	HC-RFS153	2.5	90	20	1.8	19.4
	HC-UFS152	2.5	90	20	1.8	19.4
	HC-LFS152	2.5	90	20	1.8	19.4
	HC-SFS301	4.8	120	20	2.7	29.1
	HC-SFS352 • 353	5.5	130	20	2.7	29.1
MR-J2S-350A	HC-RFS203	3.5	90	20	1.8	19.4
	HC-UFS202	3.5	90	20	1.8	19.4
	HC-LFS202	3.5	90	20	1.8	19.4

Note 1. Note that the power supply capacity will vary according to the power supply impedance. This value assumes that the power factor improving reactor is not used.

^{2.} Heat generated during regeneration is not included in the servo amplifier-generated heat. To calculate heat generated by the regenerative brake option, use Equation 13.1 in Section 13.1.1.

Servo amplifier	Servo motor	(Note 1) Power supply	`	te 2) enerated heat[W]	Area required for	heat dissipation
		capacity[kVA]	At rated torque	With servo off	[m²]	[ft ²]
	HC-SFS502	7.5	195	25	3.9	42.0
	HC-RFS353	5.5	135	25	2.7	29.1
	HC-RFS503	7.5	195	25	3.9	42.0
MR-J2S-500A	HC-UFS352	5.5	195	25	3.9	42.0
	HC-UFS502	7.5	195	25	3.9	42.0
	HC-LFS302	4.5	120	25	2.4	25.8
	HA-LFS502	7.5	195	25	3.9	42.0
MR-J2S-700A	HC-SFS702	10.0	300	25	6.0	64.6
MR-J25-700A	HA-LFS702	10.6	300	25	6.0	64.6
	HA-LFS11K2	16.0	530	45	11	118.4
MR-J2S-11KA	HA-LFS801	12.0	390	45	7.8	83.9
WIK-J25-TTKA	HA-LFS12K1	18.0	580	45	11.6	124.8
	HA-LFS11K1M	16.0	530	45	11.0	118.4
	HA-LFS15K2	22.0	640	45	13	139.0
MR-J2S-15KA	HA-LFS15K1	22.0	640	45	13	139.0
	HA-LFS15K1M	22.0	640	45	13	139.0
	HA-LFS22K2	33.0	850	55	17	183.0
MR-J2S-22KA	HA-LFS20K1	30.1	775	55	15.5	166.8
WIK-JAS-AAKA	HA-LFS25K1	37.6	970	55	19.4	208.8
	HA-LFS22K1M	33.0	850	55	17.0	193.0

Note 1. Note that the power supply capacity will vary according to the power supply impedance. This value assumes that the power factor improving reactor is not used.

^{2.} Heat generated during regeneration is not included in the servo amplifier-generated heat. To calculate heat generated by the regenerative brake option, use Equation 13.1 in Section 13.1.1.

(2) Heat dissipation area for enclosed servo amplifier

The enclosed control box (hereafter called the control box) which will contain the servo amplifier should be designed to ensure that its temperature rise is within $+10^{\circ}$ C at the ambient temperature of 40°C. (With a 5°C (41°F) safety margin, the system should operate within a maximum 55°C (131°F) limit.) The necessary enclosure heat dissipation area can be calculated by Equation 12.1:

$$A = \frac{P}{K \cdot \Delta T} \tag{12.1}$$

where, A : Heat dissipation area [m2]

P : Loss generated in the control box [W]

 $\Delta T~$: Difference between internal and ambient temperatures $[^{\circ}\!C]$

K : Heat dissipation coefficient [5 to 6]

When calculating the heat dissipation area with Equation 12.1, assume that P is the sum of all losses generated in the enclosure. Refer to Table 12.1 for heat generated by the servo amplifier. "A" indicates the effective area for heat dissipation, but if the enclosure is directly installed on an insulated wall, that extra amount must be added to the enclosure's surface area.

The required heat dissipation area will vary wit the conditions in the enclosure. If convection in the enclosure is poor and heat builds up, effective heat dissipation will not be possible. Therefore, arrangement of the equipment in the enclosure and the use of a fan should be considered.

Table 12.1 lists the enclosure dissipation area for each servo amplifier when the servo amplifier is operated at the ambient temperature of 40° C (104° F) under rated load.

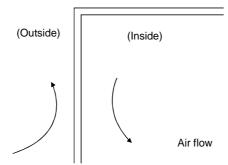


Fig. 12.5 Temperature distribution in enclosure

When air flows along the outer wall of the enclosure, effective heat exchange will be possible, because the temperature slope inside and outside the enclosure will be steeper.

12.3 Dynamic brake characteristics

Fig. 12.6 shows the pattern in which the servo motor comes to a stop when the dynamic brake is operated. Use Equation 12.2 to calculate an approximate coasting distance to a stop. The dynamic brake time constant τ varies with the servo motor and machine operation speeds. (Refer to Fig. 12.7. Please contact us for the servo motor not indicated.)

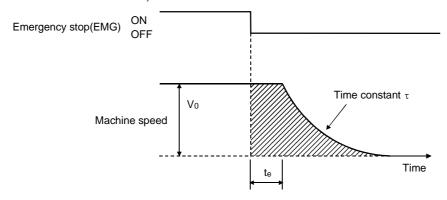
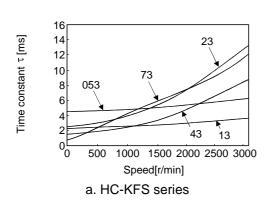



Fig. 12.6 Dynamic brake operation diagram

Lmax	$= \frac{V_0}{60} \cdot \left\{ t_0 + \tau \left[1 + \frac{J_L}{J_M} \right] \right\}(12.2)$
Lmax	
Vo	: Machine rapid feedrate
J_{M}	: Servo motor inertial moment
J_{L}	: Load inertia moment converted into equivalent value on servo motor shaft [kg • cm²][oz • in²]
τ	: Brake time constant[s]
te	: Delay time of control section[s]
	For 7kW or less servo, there is internal relay delay time of about 30ms. For 11kW to 22kW
	servo, there is delay time of about 100ms caused by a delay of the external relay and a delay of
	the magnetic contactor built in the external dynamic brake.

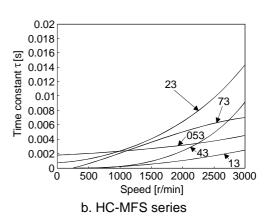


Fig. 12.7 Dynamic brake time constant 1

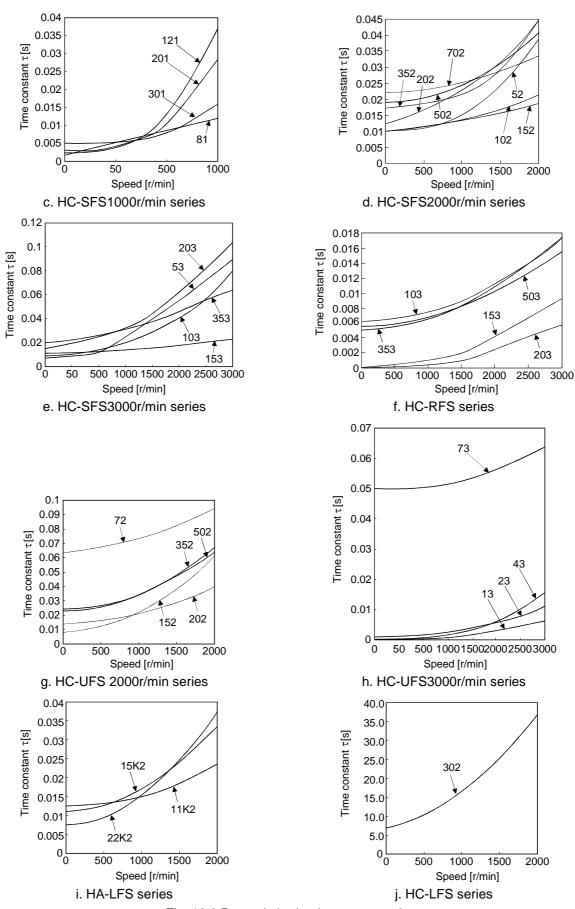
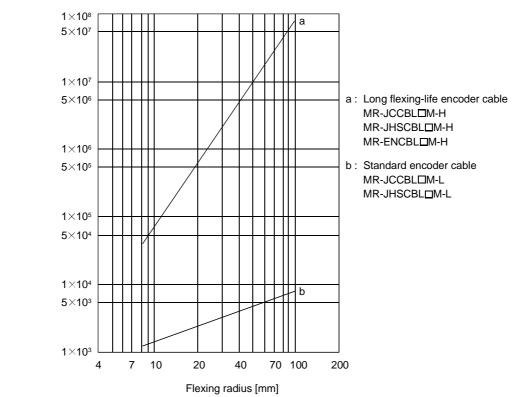


Fig. 12.8 Dynamic brake time constant 2


Use the dynamic brake at the load inertia moment indicated in the following table. If the load inertia moment is higher than this value, the built-in dynamic brake may burn. If there is a possibility that the load inertia moment may exceed the value, contact Mitsubishi.

Servo amplifier	Load inertia moment ratio [times]	
MR-J2S-10A to MR-J2S-200A	20	
MR-J2S-10A1 to MR-J2S-40A1	30	
MR-J2S-350A	16	
MR-J2S-500A • MR-J2S-700A	15	
MR-J2S-11KA to MR-J2S-22KA	(Note) 30	

Note. The value assumes that the external dynamic brake is used.

12.4 Encoder cable flexing life

The flexing life of the cables is shown below. This graph calculated values. Since they are not guaranteed values, provide a little allowance for these values.

12.5 Inrush currents at power-on of main circuit and control circuit

The following table indicates the inrush currents (reference value) that will flow when the maximum permissible voltage (253VAC) is applied at the power supply capacity of 2500kVA and the wiring length of 1m.

Come Amplifian	Inrush Cur	rents (A _{0-p})
Servo Amplifier	Main circuit power supply (L ₁ , L ₂ , L ₃)	Control circuit power supply (L ₁₁ , L ₂₁)
MR-J2S-10A • 20A	30A (Attenuated to approx. 5A in 10ms)	70 / 100 /
MR-J2S-40A • 60A	30A (Attenuated to approx. 5A in 10ms)	70 to 100A
MR-J2S-70A • 100A	54A (Attenuated to approx. 12A in 10ms)	(Attenuated to approx. 0A in 0.5 to 1ms)
MR-J2S-200A · 350A 120A (Attenuated to approx. 12A in 20m		100 to 130A
MIK-323-200A - 330A	120A (Attenuated to approx. 12A in 20ms)	(Attenuated to approx. 0A in 0.5 to 1ms)
MR-J2S-500A	44A (Attenuated to approx. 20A in 20ms)	
MR-J2S-700A	88A (Attenuated to approx. 20A in 20ms)	30A
MR-J2S-11KA		(Attenuated to approx. 0A in several ms)
MR-J2S-15KA	235A (Attenuated to approx. 20A in 20ms)	(Attenuated to approx. OA in several his)
MR-J2S-22KA		
MR-J2S-10A1 • 20A1	59A (Attenuated to approx. 5A in 4ms)	100 to 130A
MR-J2S-40A1	72A (Attenuated to approx. 5A in 4ms)	(Attenuated to approx. 0A in 0.5 to 1ms)

Since large inrush currents flow in the power supplies, always use no-fuse breakers and magnetic contactors. (Refer to Section 13.2.2.)

When circuit protectors are used, it is recommended to use the inertia delay type that will not be tripped by an inrush current.

13. OPTIONS AND AUXILIARY EQUIPMENT

$\hat{\Lambda}$	WAF	NIIN	JC
	WAF	KINII	١G

 Before connecting any option or auxiliary equipment, make sure that the charge lamp is off more than 15 minutes after power-off, then confirm the voltage with a tester or the like. Otherwise, you may get an electric shock.

!CAUTION

• Use the specified auxiliary equipment and options. Unspecified ones may lead to a fault or fire.

13.1 Options

13.1.1 Regenerative brake options

!CAUTION

• The specified combinations of regenerative brake options and servo amplifiers may only be used. Otherwise, a fire may occur.

(1) Combination and regenerative power

The power values in the table are resistor-generated powers and not rated powers.

			Re	generative po	ower[W]			
Servo amplifier	Built-in regenerative brake resistor	MR-RB032 [40Ω]	MR-RB12 [40Ω]	MR-RB32 [40Ω]	MR-RB30 [13Ω]	(Note) MR-RB50 [13Ω]	MR-RB31 [6.7Ω]	(Note) MR-RB51 [6.7Ω]
MR-J2S-10A(1)		30						
MR-J2S-20A(1)	10	30	100					
MR-J2S-40A(1)	10	30	100					
MR-J2S-60A	10	30	100					
MR-J2S-70A	20	30	100	300				
MR-J2S-100A	20	30	100	300				
MR-J2S-200A	100				300	500		
MR-J2S-350A	100				300	500		
MR-J2S-500A	130				300	500		
MR-J2S-700A	170						300	500

Note. Always install a cooling fan.

		(Note) Regene	rative power[W]	
Servo amplifier	External regenerative	MR-RB65	MR-RB66	MR-RB67
	brake resistor (Accessory)	$[8\Omega]$	[5Ω]	$[4\Omega]$
MR-J2S-11KA	500 (800)	500 (800)		
MR-J2S-15KA	850 (1300)		850 (1300)	
MR-J2S-22KA	850 (1300)			850 (1300)

Note. Values in parentheses assume the installation of a cooling fan.

(2) Selection of the regenerative brake option

(a) Simple selection method

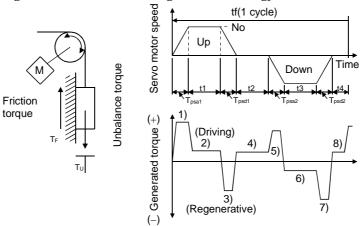
In horizontal motion applications, select the regenerative brake option as described below: When the servo motor is run without load in the regenerative mode from the running speed to a stop, the permissible duty is as indicated in Section 5.1 of the separately available Servo Motor Instruction Manual.

For the servo motor with a load, the permissible duty changes according to the inertia moment of the load and can be calculated by the following formula:

 $\frac{\text{Permissible}_}{\text{duty}} = \frac{\text{Permissible duty for servo motor with no load (value indication Section 5.1 in Servo Motor Instruction Manual)}}{(m+1)}$

$$\times \left(\frac{\text{ratedspeed}}{\text{running speed}}\right)^2 \text{[times/min]}$$

where m = load inertia moment/servo motor inertia moment


From the permissible duty, find whether the regenerative brake option is required or not. Permissible duty < number of positioning times [times/min] Select the regenerative brake option out of the combinations in (1) in this section.

(b) To make selection according to regenerative energy

Use the following method when regeneration occurs continuously in vertical motion applications or when it is desired to make an in-depth selection of the regenerative brake option:

a. Regenerative energy calculation

Use the following table to calculate the regenerative energy.

Formulas for calculating torque and energy in operation

Regenerative power	Torque applied to servo motor [N · m]	Energy [J]
1)	$T_1 = \frac{(J_L + J_M) \cdot N_0}{9.55 \times 10^4} \cdot \frac{1}{T_{psa1}} + T_U + T_F$	$E_1 = \frac{0.1047}{2} \cdot N_0 \cdot T_1 \cdot T_{psa1}$
2)	$T_2 = T_U + T_F$	$E_2 = 0.1047 \cdot N_0 \cdot T_2 \cdot t_1$
3)	$T_3 = \frac{(J_{L+} J_{M}) \cdot N_0}{9.55 \times 10^4} \cdot \frac{1}{T_{psd1}} + T_{U} + T_{F}$	$E_3 = \frac{0.1047}{2} \cdot N_0 \cdot T_3 \cdot T_{psd1}$
4), 8)	$T_4 = T_U$	E₄≥0 (No regeneration)
5)	$T_5 = \frac{(J_L + J_M) \cdot N_0}{9.55 \times 10^4} \cdot \frac{1}{T_{psa2}} - T_U + T_F$	$E_5 = \frac{0.1047}{2} \cdot N_0 \cdot T_5 \cdot T_{psa2}$
6)	$T_6 = T_U + T_F$	$E_6 = 0.1047 \cdot N_0 \cdot T_6 \cdot t_3$
7)	$T_7 = \frac{(J_L + J_M) \cdot N_0}{9.55 \times 10^4} \cdot \frac{1}{T_{psd2}} - T_U + T_F$	$E_7 = \frac{0.1047}{2} \cdot N_0 \cdot T_7 \cdot T_{psd2}$

From the calculation results in 1) to 8), find the absolute value (Es) of the sum total of negative energies.

b. Losses of servo motor and servo amplifier in regenerative mode The following table lists the efficiencies and other data of the servo motor and servo amplifier in the regenerative mode.

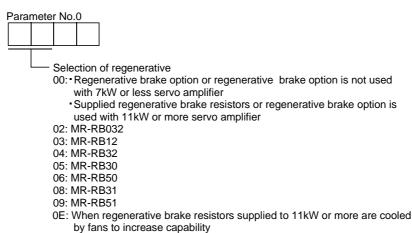
Servo amplifier	Inverse efficiency[%]	Capacitor charging[J]
MR-J2S-10A	55	9
MR-J2S-10A1	55	4
MR-J2S-20A	70	9
MR-J2S-20A1	70	4
MR-J2S-40A	85	11
MR-J2S-40A1	85	12
MR-J2S-60A	85	11
MR-J2S-70A	80	18
MR-J2S-100A	80	18
MR-J2S-200A	85	40
MR-J2S-350A	85	40
MR-J2S-500A	90	45
MR-J2S-700A	90	70
MR-J2S-11KA	90	120
MR-J2S-15KA	90	170
MR-J2S-22KA	90	250

Inverse efficiency (η)

:Efficiency including some efficiencies of the servo motor and servo amplifier when rated (regenerative) torque is generated at rated speed. Since the efficiency varies with the speed and generated torque, allow for about 10%.

Capacitor charging (Ec) : Energy charged into the electrolytic capacitor in the servo amplifier.

Subtract the capacitor charging from the result of multiplying the sum total of regenerative energies by the inverse efficiency to calculate the energy consumed by the regenerative brake option.


$$ER[J] = \eta \cdot Es - Ec$$

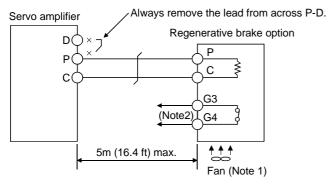
Calculate the power consumption of the regenerative brake option on the basis of single-cycle operation period tf [s] to select the necessary regenerative brake option.

(3) Connection of the regenerative brake option

Set parameter No.2 according to the open to be used.

The MR-RB65, 66 and 67 are regenerative brake options that have encased the GRZG400- 2Ω , GRZG400- 1Ω and GRZG400- 0.8Ω , respectively. When using any of these regenerative brake options, make the same parameter setting as when using the GRZG400- 2Ω , GRZG400- 1Ω or GRZG400- 0.8Ω (supplied regenerative brake resistors or regenerative brake option is used with 11kW or more servo amplifier).

(4) Connection of the regenerative brake option

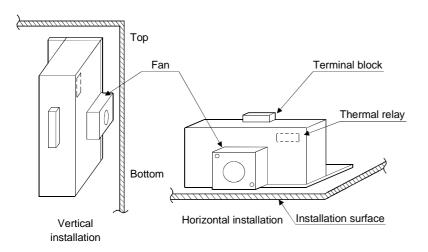

POINT

• When using the MR-RB50 and MR-RB51, cooling by a fan is required. Please obtain a cooling fan at your discretion.

The regenerative brake option will cause a temperature rise of $+100^{\circ}$ C ($+212^{\circ}$ F) degrees relative to the ambient temperature. Fully examine heat dissipation, installation position, used cables, etc. before installing the option. For wiring, use flame-resistant cables and keep them clear of the regenerative brake option body. Always use twisted cables of max. 5m(16.4ft) length for connection with the servo amplifier.

(a) MR-J2S-350A or less

Always remove the wiring from across P-D and fit the regenerative brake option across P-C. The G3 and G4 terminals act as a thermal sensor. G3-G4 are opened when the regenerative brake option overheats abnormally.



Note 1. When using the MR-RB50, forcibly cool it with a cooling fan (1.0m³/min, □92 or so).

Make up a sequence which will switch off the magnetic contactor (MC) when abnormal heating occurs.

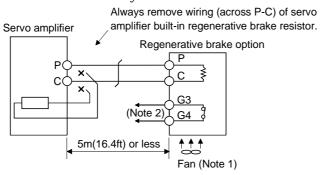
G3-G4 contact specifications
Maximum voltage: 120V AC/DC
Maximum current: 0.5A/4.8VDC
Maximum capacity: 2.4VA

For the MR-RB50 install the cooling fan as shown.

[Unit : mm(in)]

Fan installation screw hole dimensions

2-M3 screw hole
(for fan installation)
Depth 10 or less
(Screw hole already
machined)

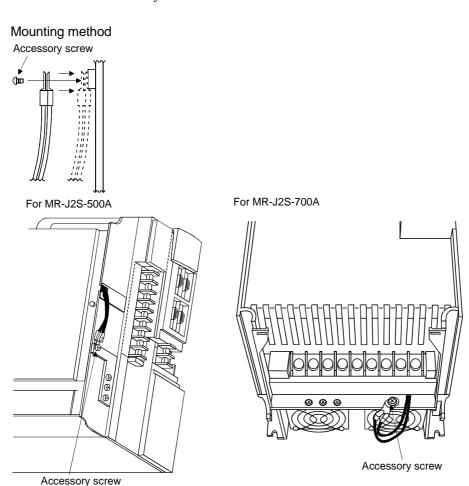

82.5
(3.25)

Recommended fan:

(b) MR-J2S-500A • MR-J2S-700A

Always remove the wiring (across P-C) of the servo amplifier built-in regenerative brake resistor and fit the regenerative brake option across P-C.

The G3 and G4 terminals act as a thermal sensor. G3-G4 are opened when the regenerative brake option overheats abnormally.

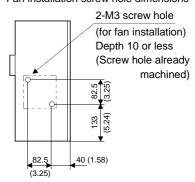

Note 1. When using the MR-RB50 •MR-RB51, forcibly cool it with a cooling fan (1.0m³/min,□92 or so).

2. Make up a sequence which will switch off the magnetic contactor (MC)

when abnormal heating occurs. G3-G4 contact specifications Maximum voltage: 120V AC/DC

Maximum current: 0.5A/4.8VDC Maximum capacity: 2.4VA

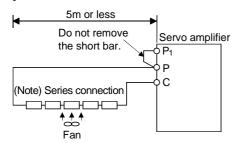
When using the regenerative brake resistor option, remove the servo amplifier's built-in regenerative brake resistor terminals (across P-C), fit them back to back, and secure them to the frame with the accessory screw as shown below.



For the MR-RB50 • MR-RB51 install the cooling fan as shown.

Top
Fan Terminal block
Thermal relay
Vertical Horizontal installation Installation surface installation

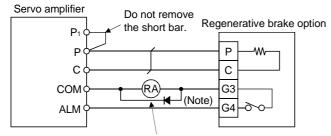
Fan installation screw hole dimensions


[Unit: mm(in)]

Recommended fan:
Toyo Denki's TL396A or equivalent

(c) MR-J2S-11KA to MR-J2S-22KA (when using the supplied regenerative brake resistor)

When using the regenerative brake resistors supplied to the servo amplifier, the specified number of resistors (4 or 5 resistors) must be connected in series. If they are connected in parallel or in less than the specified number, the servo amplifier may become faulty and/or the regenerative brake resistors burn. Install the resistors at intervals of about 70mm. Cooling the resistors with fans $(1.0\text{m}^3/\text{min}, \Box 92 \text{ (about two fans) improves the regeneration capability. In this case, set "0E \square \square \text{in} in parameter No. 0.$


Note. The number of resistors connected in series depends on the resistor type. Install a thermal sensor or like to configure a circuit that will shut off the main circuit power at abnormal overheat. The supplied regenerative brake resistor does not have a built-in thermal sensor. If the regenerative brake circuit fails, abnormal overheat of the resistor is expected to occur. On the customer side, please also install a thermal sensor for the resistor and provide a protective circuit that will shut off the main circuit power supply at abnormal overheat. The detection level of the thermal sensor changes depending on the resistor installation method. Please install the thermal sensor in the optimum position according to the customer's design standards, or use our regenerative brake option having built-in thermal sensor (MR-RB65, 66, 67).

Servo Amplifier	Regenerative Brake Resistor	Regenerative Power [W] Normal Cooling		Resistance $[\Omega]$	Number of Resistors
MR-J2S-11KA	GRZG400-2Ω	500	800	8	4
MR-J2S-15KA	GRZG400-1Ω	850	1300	5	5
MR-J2S-22KA	GRZG400-0.8Ω	850	1300	4	5

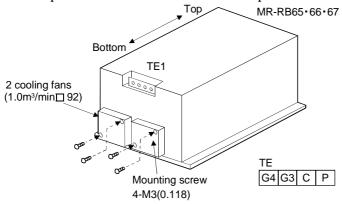
(d) MR-J2S-11KA-PX to MR-J2S-22KA-PX (when using the regenerative brake option) The MR-J2S-11KA-PX to MR-J2S-22KA-PX servo amplifiers are not supplied with regenerative brake resistors. When using any of these servo amplifiers, always use the MR-RB65, 66 or 67 regenerative brake option.

The MR-RB65, 66 and 67 are regenerative brake options that have encased the GRZG400-2 Ω , GRZG400-1 Ω and GRZG400-0.8 Ω , respectively. When using any of these regenerative brake options, make the same parameter setting as when using the GRZG400-2 Ω , GRZG400-1 Ω or GRZG400-0.8 Ω (supplied regenerative brake resistors or regenerative brake option is used with 11kW or more servo amplifier).

Cooling the regenerative brake option with fans improves regenerative capability. The G3 and G4 terminals are for the thermal sensor. G3-G4 are opened when the regenerative brake option overheats abnormally.

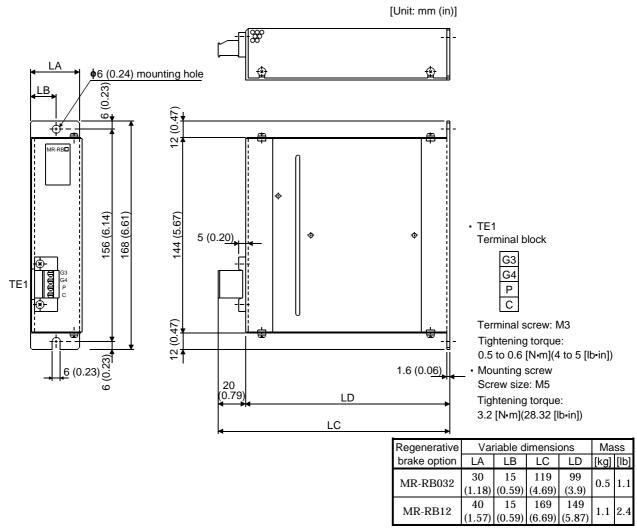
Configure up a circuit which shuts off main circuit power when thermal sensor operates.

Note. Specifications of contact across G3-G4

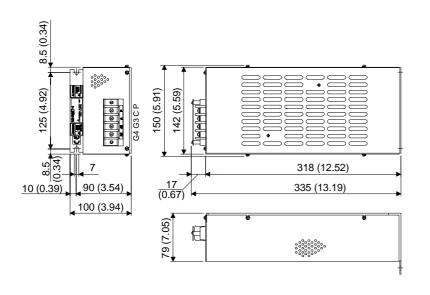

Maximum voltage : 120V AC/DC

Maximum current : 0.5A/4.8VDC

Maximum capacity : 2.4VA


	Regenerative	Resistance	Regenerative Power [W]			
Servo Amplifier	vo Amplifier Brake Option Model		Without Fans	With Fans		
MR-J2S-11KA-PX	MR-RB65	8	500	800		
MR-J2S-15KA-PX	MR-RB66	5	850	1300		
MR-J2S-22KA-PX	MR-RB67	4	850	1300		

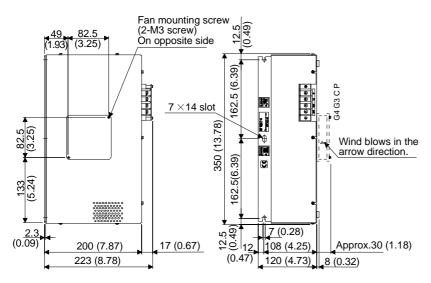
When using fans, install them using the mounting holes provided in the bottom of the regenerative brake option. In this case, set " $0E \square \square$ " in parameter No. 0.


(5) Outline drawing

(a) MR-RB032 • MR-RB12

(b) MR-RB30 • MR-RB31 • MR-RB32

Terminal block


P C Terminal screw: M4
G3 Tightening torque: 1.2 [N-m] (10.6 [lb-in])
G4

Mounting screw
 Screw : M6

Tightening torque: 5.4 [N-m](47.79 [lb-in])

Regenerative brake option	Mass [kg] (lb)
MR-RB30	
MR-RB31	2.9 (6.4)
MR-RB32	

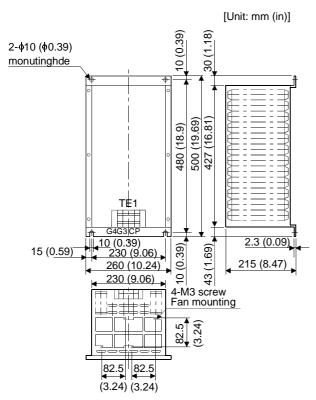
(c) MR-RB50 • MR-RB51

• Terminal block [Unit: mm (in)]

Р

C Terminal screw: M4

G3 Tightening torque: 1.2 [N-m](10.6 [lb-in])


G4

Mounting screw
 Screw : M6

Tightening torque: 5.4 [N-m](47.79 [lb-in])

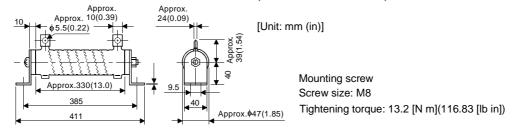
Regenerative brake option	Mass [kg] (lb)
MR-RB50	5.6 (12.3)
MR-RB51	3.0 (12.3)

(d) MR-RB65 MR-RB66 MR-RB67

Terminal block

G4 G3 C P

Terminal screw: M5


Tightening torque: 2.0 [N·m](17 [lb·in])

Mounting screw
 Screw size: M8

Tightening torque: 13.2 [N m](116.83 [lb in])

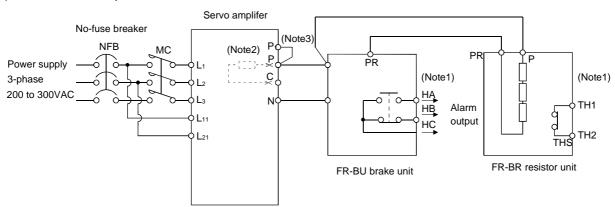
Regenerative	Mass			
brake option	[kg]	(lb)		
MR-RB65	10	22.0		
MR-RB66	11	24.3		
MR-RB67	11	24.3		

(e) GRZG400-2 Ω • GRZG400-1 Ω • GRZG400-0.8 Ω (standard accessories)

13.1.2 Brake unit

POINT

- The brake unit and resistor unit of other than 200V class are not applicable to the servo amplifier.
- The brake unit and resistor unit of the same capacity must be combined. The units of different capacities may result in damage.
- The brake unit and resistor unit must be installed on a vertical surface in the vertical direction. If they are installed in the horizontal direction or on a horizontal surface, a heat dissipation effect reduces.
- The temperature of the resistor unit casing rises to higher than 100°C (212°F). Do not cause cables and combustibles to make contact with the casing.

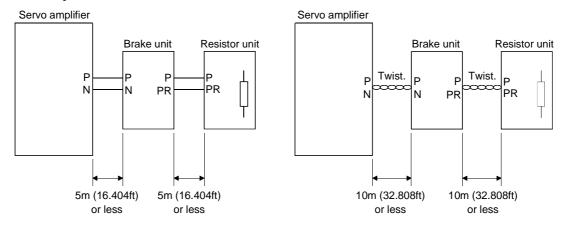

The brake unit is the integration of the regenerative control and resistor and is connected to the bus (across P-N) of the servo amplifier. As compared to the MR-RB regenerative brake option, the brake unit can return larger power. Hence, use the this brake unit when the MR-RB cannot provide sufficient regenerative brake capability.

When using the brake unit, set " $01\square\square$ " in parameter No.0.

(1) Selection

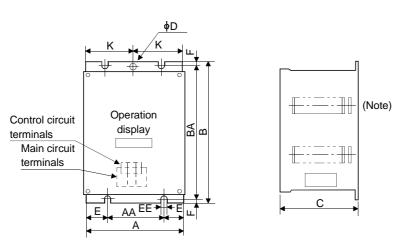
Brake unit	Resistor unit	Permissible Continuous Power [kw]	Max. Instantaneous Power [kw]	Applicable Servo Amplifier
FR-BU-15K	FR-BR-15K	0.99	16.5	MR-J2S-500A MR-J2S-700A
FR-BU-30K	FR-BR-30K	1.99	33.4	MR-J2S-11KA
FR-BU-55K	FR-BR-55K	3.91	66.8	MR-J2S-15KA MR-J2S-22KA

(2) Connection example



Note 1. Make up the external sequence to switch the power off when an alarm occurs or when the thermal relay is actuated.

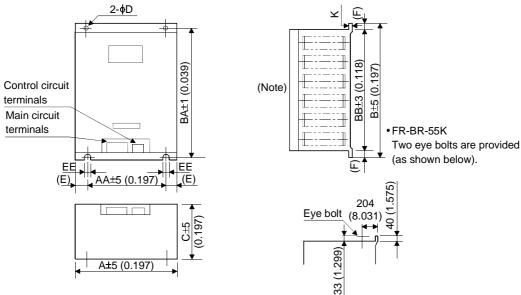
- 2. When using servo amplifiers of 5kW and 7kW, always remove the lead of built-in regenerative brake resistor connected to P terminal and C terminal.
- 3. When using servo ampliflers of 11kw to 22kw, always connect P-P₁.(Factory-wired.) When using the power factor improving DC reactor, refer to Section 13.2.4


The cables between the servo amplifier and brake unit and between the resistor unit and brake unit should be as short as possible. The cables longer than 5m(16.404ft) should be twisted. If twisted, the cables must not be longer than 10m(32.808ft).

The cable size should be equal to or larger than the recommended size. See the brake unit instruction manual. You cannot connect one set of brake unit to two servo amplifiers or two sets of brake units to one servo amplifier.

(3) Outside dimensions

(a) Brake unit (FR-BU)


[Unit: mm(in)]

Note. Ventilation ports are provided in both side faces and top face. The bottom face is open.

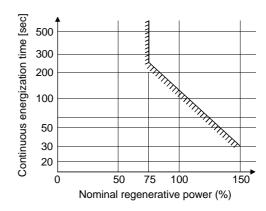
Brake Unit	А	AA	В	ВА	С	D	E	EE	К	F	Approx. Mass [kg(lb)]
FR-BU-15K	100	60	240	225	128	6	18.5	6	48.5	7.5	2.4
FR-DU-13K	(3.937)	(2.362)	(9.446)	(10.039)	(5.039)	(0.236)	(0.728)	(0.236)	(1.909)	(0.295)	(5.291)
ED DIT 2017	160	90	240	225	128	6	33.5	6	78.5	7.5	3.2
FR-BU-30K	(6.299)	(3.543)	(9.446)	(10.039)	(5.039)	(0.236)	(1.319)	(0.236)	(3.091)	(0.295)	(7.055)
FR-BU-55K	265	145	240	225	128		58.6	6		7.5	5.8
FR-BU-55K	(10.433)	(5.709)	(9.446)	(10.039)	(5.039)		(2.307)	(0.236)		(0.295)	(12.787)

(b) Resistor unit (FR-BR)

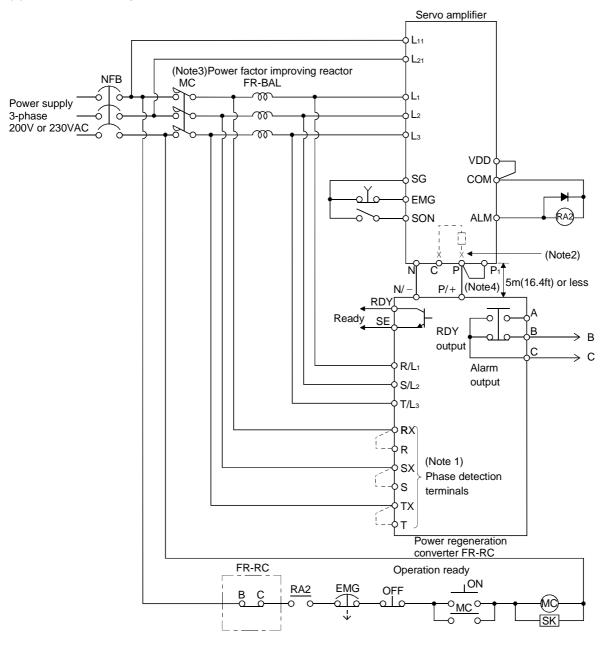
[Unit : mm(in)]

Note. Ventilation ports are provided in both side faces and top face. The bottom face is open.

Resistor Unit Model	А	AA	В	ВА	BB	С	D	E	EE	К	F	Approx. Mass [kg(lb)]
FR-BR-	170	100	450	432	410	220	6	35	6	1.6	20	15
15K	(6.693)	(3.937)	(17.717)	(17.008)	(16.142)	(8.661)	(0.236)	(1.378)	(0.236)	(0.063)	(0.787)	(66.139)
FR-BR-	340	270	600	582	560	220	10	35	10	2	20	30
30K	(11.389)	(10.63)	(23.622)	(22.913)	(22.047)	(8.661)	(0.394)	(1.378)	(0.394)	(0.079)	(0.787)	(33.069)
FR-BR-	480	410	700	670	620	450	12	35	12	3.2	40	70
55K	(18.898)	(16.142)	(27.559)	(26.378)	(24.409)	(17.717)	(0.472)	(1.378)	(0.472)	(0.126)	(1.575)	(154.323)


13.1.3 Power regeneration converter

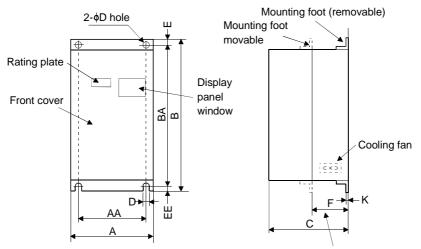
When using the power regeneration converter, set "01□□" in parameter No.0.


(1) Selection

The converters can continuously return 75% of the nominal regenerative power. They are applied to the servo amplifiers of the MR-J2S-500A to MR-J2S-22KA.

Power regeneration converter	Nominal Regenerative Power (kW)	Servo Amplifier
FR-RC-15	15	MR-J2S-500A MR-J2S-700A
FR-RC-30	30	MR-J2S-11KA MR-J2S-15KA
FR-RC-55K	55	MR-J2S-22KA

(2) Connection example

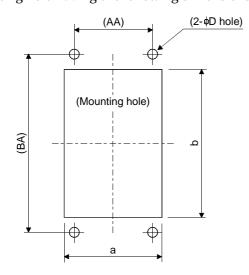


Note 1. When not using the phase detection terminals, fit the jumpers across RX-R, SX-S and TX-T. If the jumpers remain removed, the FR-RC will not operate.

- 2. For the servo amplifiers of 5k and 7kW, always remove the wiring (across P-C) of the built-in regenerative brake resistor.
- 3. Refer to the power return converter FR-RC instruction manual (IB(NA)-66330) for the power factor improving reactor to be used. When using FR-RC with the servo amplifier of 11k to 22kW, do not use the power factor improving reactor (FR-BEL) together.
- 4. For the amplifiers of 11k to 22kW, always connect across P-P1. (Wiring is factory-connected.)

(3) Outside dimensions of the power regeneration converters

[Unit: mm(in)]



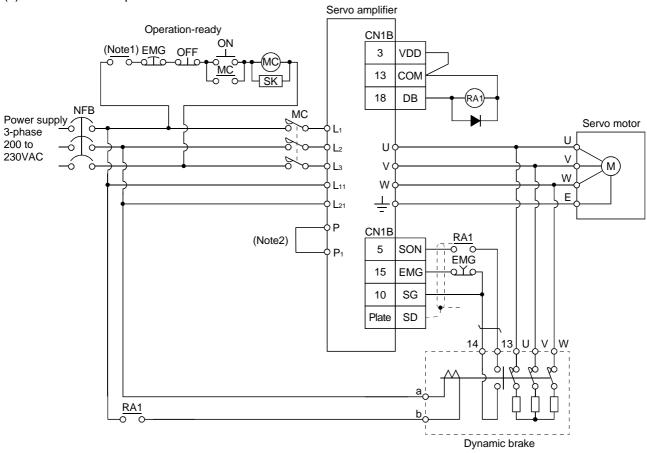
Heat generation area outside mounting dimension

Power regeneration converter	А	АА	В	ВА	С	D	E	EE	К	F	Approx. Mass [kg(lb)]
FR-RC-15K	270	200	450	432	195	10	10	8	3.2	87	19
	(10.630)	(7.874)	(17.717)	(17.008)	(7.677)	(0.394)	(0.394)	(0.315)	(0.126)	(3.425)	(41.888)
FR-RC-30K	340	270	600	582	195	10	10	8	3.2	90	31
I'K-KC-30K	(13.386)	(10.630)	(23.622)	(22.913)	(7.677)	(0.394)	(0.394)	(0.315)	(0.126)	(3.543)	(68.343)
FR-RC-55K	480	410	700	670	250	12	15	15	3.2	135	55
FR-RC-33K	(18.898)	(16.142)	(27.559)	(26.378)	(9.843)	(0.472)	(0.591)	(0.591)	(0.126)	(5.315)	(121.254)

(4) Mounting hole machining dimensions

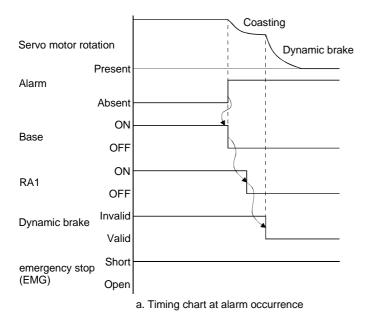
When the power regeneration converter is fitted to a totally enclosed type box, mount the heat generating area of the converter outside the box to provide heat generation measures. At this time, the mounting hole having the following dimensions is machined in the box.

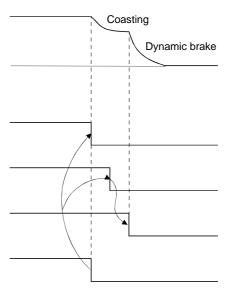
				[Unit :	mm(in)]
Model	Α	В	D	AA	BA
FR-RC-15K	260	412	10	200	432
	(10.236)	(16.220)	(0.394)	(7.874)	(17.009)
FR-RC-30K	330	562	10	270	582
FR-RC-30K	(12.992)	(22.126)	(0.394)	(10.630)	(22.913)
FR-RC-55K	470	642	12	410	670
	(18.504)	(25.276)	(0.472)	(16.142)	(26.378)


13.1.4 External dynamic brake

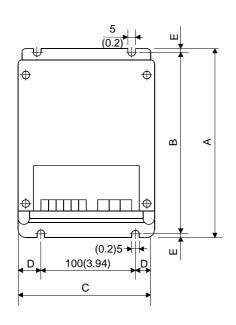
(1) Selection of dynamic brake

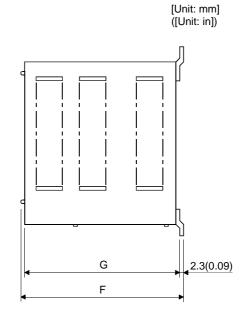
The dynamic brake is designed to bring the servo motor to a sudden stop when a power failure occurs or the protective circuit is activated, and is built in the 7kW or less servo amplifier. Since it is not built in the 11kW or more servo amplifier, purchase it separately if required. Set " $\Box 1 \Box \Box$ " in the parameter No. 1.


Servo amplifier	Dynamic brake
MR-J2S-11KA	DBU-11K
MR-J2S-15KA	DBU-15K
MR-J2S-22KA	DBU-22K


(2) Connection example

Note1. Configure up the circuit so that power is switched off in the external sequence at servo alarm occurrence.


^{2.} When using servo ampliflers of 11kw to 22kw, always connect P-P1.(Factory-wired.) When using the power factor improving DC reactor, refer to Section 13.2.4



b. Timing chart at emergency stop (EMG) validity

(3) Outline dimension drawing

Terminal block

E a b 13 14

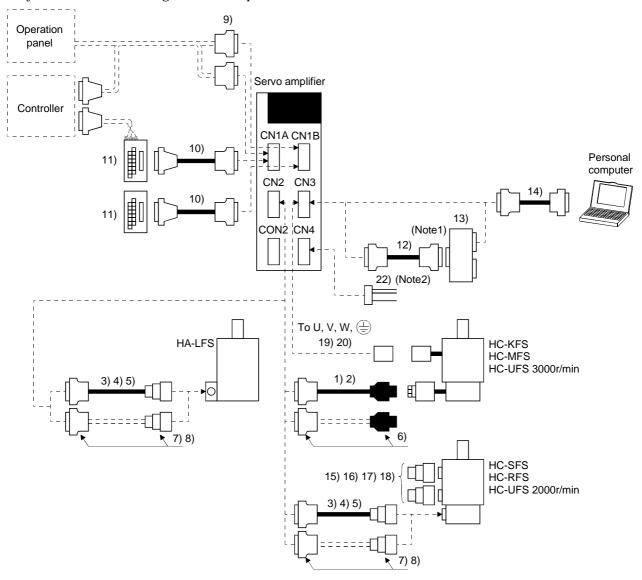
Screw: M3.5

Tightening torque: 0.8 [N-m](7 [lb-in])]

U V W Screw : M4

Tightening torque: 1.2 [N-m](10.6 [lb-in])]

Dynamic brake	Α	В	С	D	E	F	G	Mass [kg]([lb])	Connection wire [mm ²]
DBU-11K	200 (7.87)	190 (7.48)	140 (5.51)	20 (0.79)	5 (0.2)	170 (6.69)	163.5 (6.44)	2 (4.41)	5.5
DBU -15K, 22K	250 (9.84)	238 (9.37)	150 (5.91)	25 (0.98)	6 (0.24)	235 (9.25)	228 (8.98)	6 (13.23)	5.5


POINT

- Configure up a sequence which switches off the contact of the brake unit after (or as soon as) it has turned off the servo on signal at a power failure or failure.
- For the braking time taken when the dynamic brake is operated, refer to Section 12.3.
- $\mbox{\ensuremath{}^{\bullet}}$ The brake unit is rated for a short duration. Do not use it for high duty.
- When the dynamic brake is used, the power supply voltage is restricted as indicated below.
 - 3-Phase 170 to 220VAC/50Hz
 - 3-Phase 170 to 242VAC/60Hz

13.1.5 Cables and connectors

(1) Cable make-up

The following cables are used for connection with the servo motor and other models. Those indicated by broken lines in the figure are not options.

Note 1. Use 12) and 13) with 7kW or less. 2. Use 21) with 11kW or more.

No.	Product	Model		Application	
1)	Standard encoder	MR-JCCBL□M-L	Connector: 10120-3000VE	Housing : 1-172161-9	Standard
	cable	Refer to (2) in this	Shell kit: 10320-52F0-008	Connector pin: 170359-1	flexing life
		section.	(3M or equivalent)	(Tyco Electronics or equivalent)	IP20
				Cable clamp : MTI-0002	
				(Toa Electric Industry)	
2)	Long flexing life	MR-JCCBL□M-H	47-4	_	Long flexing
	encoder cable	Refer to (2) in this			life
		section.			IP20
3)	Standard encoder	MR-JHSCBL□M-L	Connector: 10120-3000VE	Connector: MS3106B20-29S	Standard
	cable	Refer to (2) in this	Shell kit: 10320-52F0-008	Cable clamp: MS3057-12A	flexing life
		section.	(3M or equivalent)	(DDK)	IP20
4)	Long flexing life	MR-JHSCBL□M-H	4~-		Long flexing
	encoder cable	Refer to (2) in this			life
		section.			
5)	IP65-compliant	MR-ENCBL□M-H	Connector: 10120-3000VE	Connector	Long flexing
	encoder cable	Refer to (2) in this	Shell kit: 10320-52F0-008	: MS3106A20-29S (D190)	
		section.	(3M or equivalent)	Cable clamp	IP65
				: CE3057-12A-3 (D265)	
				Back shell: CE02-20BS-S	Not oil-
				(DDK)	resistant.
			4		
6)	Encoder	MR-J2CNM	Connector: 10120-3000VE	Housing : 1-172161-9	IP20
	connector set		Shell kit: 10320-52F0-008	Connector pin: 170359-1	
			(3M or equivalent)	(Tyco Electronics or equivalent)	
				Cable clamp : MTI-0002	
				(Toa Electric Industry)	
			<u> </u>	4	
				-	
7)	Encoder	MR-J2CNS	Connector: 10120-3000VE	Connector: MS3106B20-29S	IP20
	connector set		Shell kit: 10320-52F0-008	Cable clamp: MS3057-12A	
			(3M or equivalent)	(DDK)	
			ا		
8)	Encoder	MR-ENCNS	Connector: 10120-3000VE	Connector: MS3106A20-29S (D190)	IP65
	connector set		Shell kit: 10320-52F0-008	Cable clamp: CE3057-12A-3 (D265)	
			(3M or equivalent)	Back shell: CE02-20BS-S	
			• •	(DDK)	
			ا		

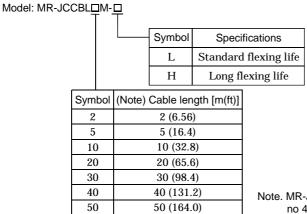
No.	Product	Model	Description	Application
	Control signal	MR-J2CN1	Connector: 10120-3000VE	
9)	connector set		Shell kit: 10320-52F0-008	
			(3M or equivalent) Qty: 2 each	
	Junction	MR-J2TBL□M	Connector: HIF3BA-20D-2.54R Connector: 10120-6000EL	For junction
	terminal block	Refer to	(Hirose Electric) Shell kit: 10320-3210-000	terminal
	cable	Section13.1.6.	(3M or equivalent)	block
			-7.	connection
		L CD CTD 0.0		
11)	Junction	MR-TB20	Refer to Section 13.1.6.	
	terminal block Bus cable	MR-J2HBUS□M	Connector: 10120-6000EL	For
	bus cable	Refer to	Connector: 10120-6000EL	maintenance
		section13.1.7.	(3M or equivalent) (3M or equivalent)	junction
12)		Section 13.1.7.	(SWO G equivalent)	card
				connection
			4.~	
13)	Maintenance	MR-J2CN3TM	Refer to Section 13.1.7.	
	junction card	LE GROLEGE AL	G	
14)	Communication	MR-CPCATCBL3M	Connector: 10120-6000EL Connector: DE-9SF-N	For
	cable	Refer to (3) in this section.	Shell kit: 10320-3210-000 Case: DE-C1-J6-S6 (3M or equivalent) (Japan Aviation Electronics)	connection with PC-AT-
		Section.	(3M or equivalent) (Japan Aviation Electronics)	compatible
				personal
				computer
	Power supply	MR-PWCNS1	Connector: CE05-6A22-23SD-B-BSS	1
	connector set	Refer to the Servo	Cable clamp:CE3057-12A-2 (D265)	
15)		Motor Instruction	(DDK)	
		Manual.		
	Power supply	MR-PWCNS2	Connector: CE05-6A24-10SD-B-BSS	
16)	connector set	Refer to the Servo	Cable clamp: CE3057-16A-2 (D265)	
10)		Motor Instruction	(DDK)	EN
		Manual.		Standard-
	Power supply	MR-PWCNS2	Plug: CE05-6A24-10SD-B-BSS	compliant
17)	connector set	Refer to the Servo	Cable clamp: CE3057-16A-2 (D265)	IP65 IP67
		Motor Instruction	(DDK)	
	Dl	Manual.	Disas MC0100A10CL AC (D100) (DDV)	
18)	Brake connector	MR-BKCN Refer to the Servo	Plug: MS3106A10SL-4S (D190) (DDK) Cable connector: YS010-5-8 (Daiwa Dengyo)	
	set	Motor Instruction	Cable connector: YS010-5-8 (Datwa Dengyo)	
		Manual.	_	
19)	Power supply	MR-PWCNK1	Plug: 5559-04P-210	IP20
	connector set	Refer to the Servo	Terminal: 5558PBT3L (For AWG16)(6 pcs.)	
		Motor Instruction	(Molex)	
		Manual.	. , , ,	
	Power supply	MR-PWCNK2	Plug: 5559-06P-210	For motor
20)	connector set		Terminal: 5558PBT3L (For AWG16)(8 pcs.)	with brake
			(Molex)	IP20
	Monitor cable	MR-H3CBL1M	Servo amplifier side connector	$\overline{}$
21)			(Tyco Electronics)	
			Housing: 171822-4	\

(2) Encoder cable

!CAUTION

If you have fabricated the encoder cable, connect it correctly.
 Otherwise, misoperation or explosion may occur.

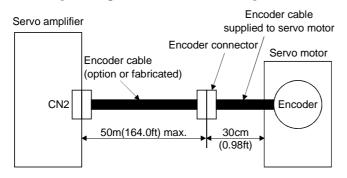
POINT

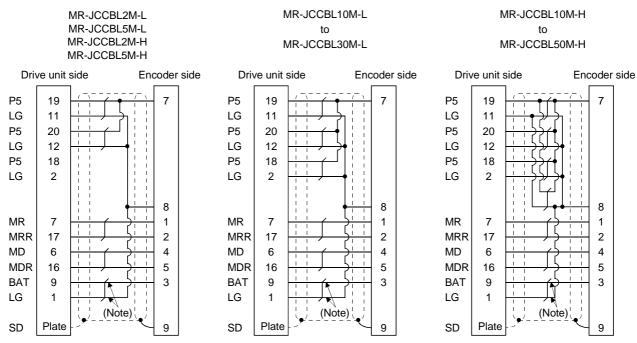

- The encoder cable is not oil resistant.
- Refer to Section 12.4 for the flexing life of the encoder cable.
- When the encoder cable is used, the sum of the resistance values of the cable used for P5 and the cable used for LG should be within 2.4Ω .
- When soldering the wire to the connector pin, insulate and protect the connection portion using heat-shrinkable tubing.

Generally use the encoder cable available as our options. If the required length is not found in the options, fabricate the cable on the customer side.

(a) MR-JCCBL □M-L • MR-JCCBL □M-H

These encoder cables are used with the HC-KFS • HC-MFS • HC-UFS3000r/min series servo motors.

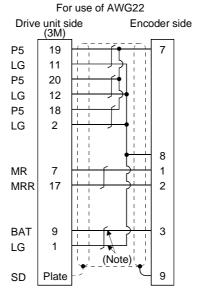

1) Model explanation


Note. MR-JCCBL□M-H has no 40(131.2) and 50m(164.0ft) sizes.

2) Connection diagram

For the pin assignment on the servo amplifier side, refer to Section 3.3.1.

Encoder connector

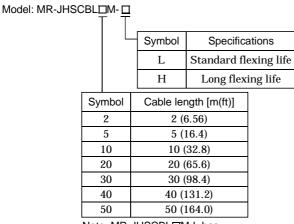


Note. Always make connection for use in an absolute position detection system. This wiring is not needed for use in an incremental system.

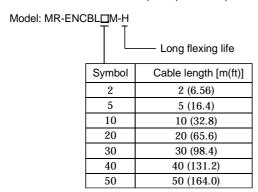
When fabricating an encoder cable, use the recommended wires given in Section 13.2.1 and the MR-J2CNM connector set for encoder cable fabrication, and fabricate an encoder cable as shown in the following wiring diagram. Referring to this wiring diagram, you can fabricate an encoder cable of up to 50m(164.0ft) length including the length of the encoder cable supplied to the servo motor.

When the encoder cable is to be fabricated by the customer, the wiring of MD and MDR is not required.

Refer to Chapter 3 of the servo motor instruction manual and choose the encode side connector according to the servo motor installation environment.

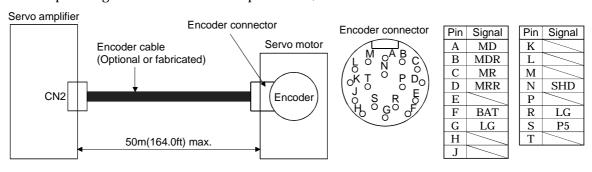


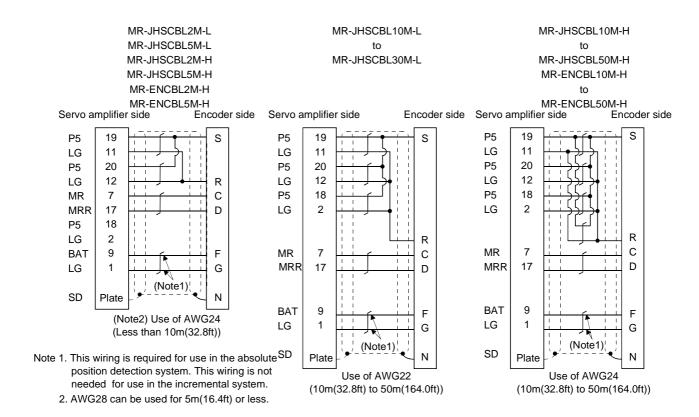
Note. Always make connection for use in an absolute position detection system. This wiring is not needed for use in an incremental system.


(b) MR-JHSCBL□M-L • MR-JHSCBL□M-H • MR-ENCBL□M-H

These encoder cables are used with the HC-SFS • HC-RFS • HC-UFS2000r/min series servo motors.

1) Model explanation




Note. MR-JHSCBL□M-L has no 40(131.2) and 50m(164.0ft) sizes.

2) Connection diagram

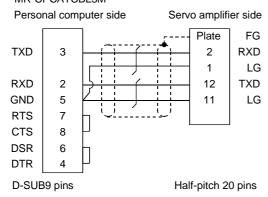
For the pin assignment on the servo amplifier side, refer to Section 3.3.1.

When fabricating an encoder cable, use the recommended wires given in Section 13.2.1 and the MR-J2CNS connector set for encoder cable fabrication, and fabricate an encoder cable in accordance with the optional encoder cable wiring diagram given in this section. You can fabricate an encoder cable of up to 50m(164.0ft) length.

Refer to Chapter 3 of the servo motor instruction guide and choose the encode side connector according to the servo motor installation environment.

(3) Communication cable

POINT


• This cable may not be used with some personal computers. After fully examining the signals of the RS-232C connector, refer to this section and fabricate the cable.

(a) Model definition

Model: MR-CPCATCBL3M Cable length 3[m](10[ft])

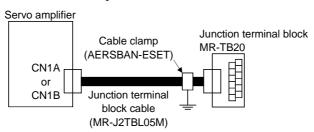
(b) Connection diagram

MR-CPCATCBL3M

When fabricating the cable, refer to the connection diagram in this section.

The following must be observed in fabrication:

- 1) Always use a shielded, multi-core cable and connect the shield with FG securely.
- 2) The optional communication cable is 3m(10ft) long. When the cable is fabricated, its maximum length is 15m(49ft) in offices of good environment with minimal noise.

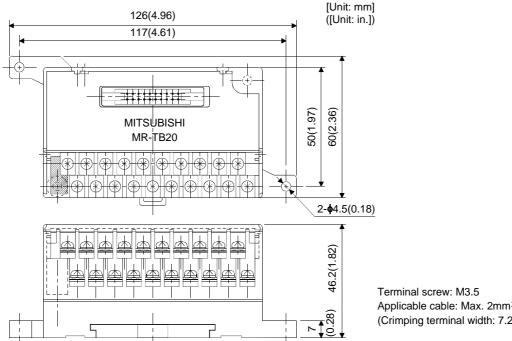

13.1.6 Junction terminal block (MR-TB20)

POINT

*When using the junction terminal block, you cannot use SG of CN1A-20 and CN1B-20. Use SG of CN1A-10 and CN1B-10.

(1) How to use the junction terminal block

Always use the junction terminal block (MR-TB20) with the junction terminal block cable (MR-J2TBL \square M) as a set. A connection example is shown below:


Ground the junction terminal block cable on the junction terminal block side with the standard accessory cable clamp fitting (AERSBAN-ESET). For the use of the cable clamp fitting, refer to Section 13.2.6, (2)(c).

(2) Terminal labels

Among the terminal block labels for the junction terminal block, use the two for the MR-J2S-A(MR-J2-A). When changing the input signals in parameters No. 43 to 48, refer to (4) in this section and Section 3.3 and apply the accessory signal seals to the labels.

(3) Outline drawing

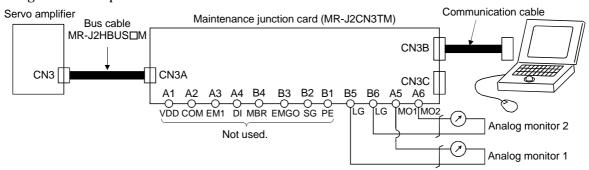
Applicable cable: Max. 2mm² (Crimping terminal width: 7.2mm (0.283 in) max.) (4) Junction terminal block cable (MR-J2TBL□M)

> Junction terminal block side connector (Hirose Electric) HIF3BA-20D-2.54R (connector)

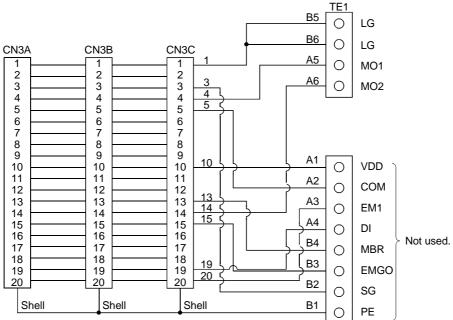
Servo amplifier side (CN1A CN1B) connector (3M) 10120-6000EL (connector) 10320-3210-000 (shell kit)

(Note) Symbol			lunction terminal	Pin		Pin			
Position co	ntrol mode	Speed co	ntrol mode	Torque co	ntrol mode	Junction terminal block terminal No.	No.		No.
For CN1A	For CN1B	For CN1A	For CN1B	For CN1A	For CN1B	DIOCK LEITHINALING.	INO.		110.
LG	LG	LG	LG	LG	LG	10	B1		1
NP	VC		VC		VLA	0	A1	ſ	2
PP	VDD		VDD		VDD	11	B2		3
P15R	DO1	P15R	DO1	P15R	DO1	1	A2	ſ	4
LZ	SON	LZ	SON	LZ	SON	12	В3		5
LA	TLC	LA	TLC	LA	VLC	2	A3	ſ	6
LB		LB	SP2	LB	SP2	13	B4		7
CR	PC	SP1	ST1	SP1	RS2	3	A4	ſ	8
COM	TLC	COM	ST2	COM	RS1	14	B5		9
SG	SG	SG	SG	SG	SG	4	A5	ſ	10
OPC	P15R		P15R		P15R	15	B6		11
NG	TLA		TLA		TC	5	A6	ſ	12
PG	COM		COM		COM	16	B7		13
OP	RES	OP	RES	OP	RES	6	A7	ſ	14
LZR	EMG	LZR	EMG	LZR	EMG	17	B8	 	15
LAR	LSP	LAR	LSP	LAR		7	A8	ſ	16
LBR	LSN	LBR	LSN	LBR		18	B9)	17
INP	ALM	SA	ALM		ALM	8	A9	ſ	18
RD	ZSP	RD	ZSP	RD	ZSP	19	B10	 	19
SD	SD	SD	SD	SD	SD	9	A10		20
						·			Plate

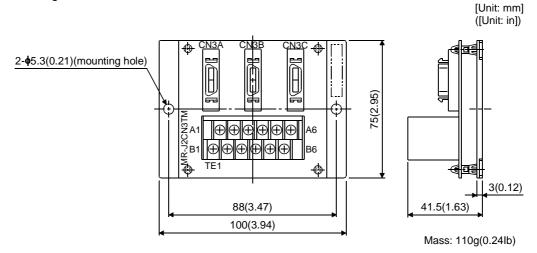
Note. The labels supplied to the junction terminal block are designed for the position control mode. When using the junction terminal block in the speed or torque control mode, change the signal abbreviations using the accessory signal seals.

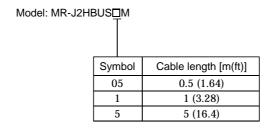

13.1.7 Maintenance junction card (MR-J2CN3TM)

POINT

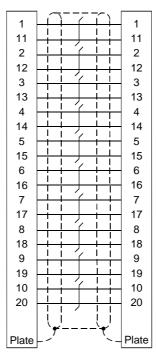

Cannot be used with the MR-J2S-11KA to MR-J2S-22KA.

(1) Usage


The maintenance junction card (MR-J2CN3TM) is designed for use when a personal computer and analog monitor outputs are used at the same time.


(2) Connection diagram

(3) Outline drawing



(4) Bus cable (MR-J2HBUS ☐ M)

MR-J2HBUS05M MR-J2HBUS1M MR-J2HBUS5M

10120-6000EL (connector) 10320-3210-000 (shell kit) 10120-6000EL (connector) 10320-3210-000 (shell kit)

13.1.8 Battery (MR-BAT, A6BAT)

POINT

• The revision (Edition 44) of the Dangerous Goods Rule of the International Air Transport Association (IATA) went into effect on January 1, 2003 and was enforced immediately. In this rule, "provisions of the lithium and lithium ion batteries" were revised to tighten the restrictions on the air transportation of batteries. However, since this battery is non-dangerous goods (non-Class 9), air transportation of 24 or less batteries is outside the range of the restrictions. Air transportation of more than 24 batteries requires packing compliant with the Packing Standard 903. When a self-certificate is necessary for battery safety tests, contact our branch or representative. For more information, consult our branch or representative. (As of Dec., 2005).

Use the battery to build an absolute position detection system.

13.1.9 MR Configurator (Servo configurations software)

The MR Configurator (servo configuration software MRZJW3-SETUP151E) uses the communication function of the servo amplifier to perform parameter setting changes, graph display, test operation, etc. on a personal computer.

(1) Specifications

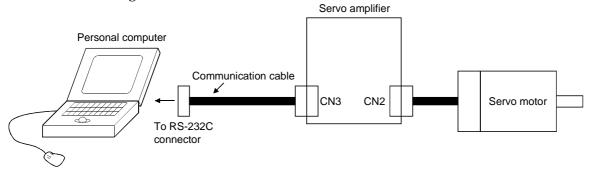
Item	Description
Communication signal	Conforms to RS-232C.
Baudrate [bps]	57600, 38400, 19200, 9600
Monitor	Display, high speed monitor, trend graph
Monitor	Minimum resolution changes with the processing speed of the personal computer.
Alarm	Display, history, amplifier data
Diagnostic	Digital I/O, no motor rotation, total power-on time, amplifier version info, motor information,
Diagnostic	tuning data, absolute encoder data, automatic voltage control, Axis name setting.
Parameters	Parameter list, turning, change list, detailed information
Test operation	Jog operation, positioning operation, motor-less operation, Do forced output, program operation.
Advanced function	Machine analyzer, gain search, machine simulation.
File operation	Data read, save, print
Others	Automatic demo, help display

(2) System configuration

(a) Components

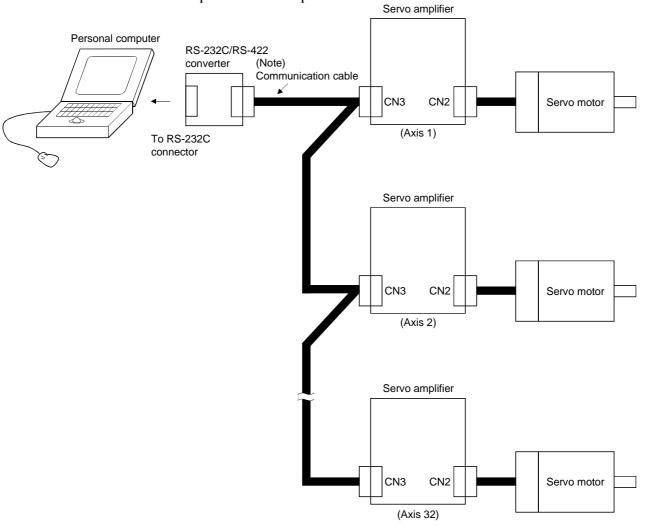
To use this software, the following components are required in addition to the servo amplifier and servo motor:

Model	(Note 1) Description
(Note 2) Personal computer	IBM PC-AT compatible where the English version of Windows® 95, Windows® 98, Windows® Me, Windows NT® Workstation 4.0 or Windows® 2000 Professional operates Processor: Pentium® 133MHz or more (Windows® 95, Windows® 98, Windows NT® Workstation 4.0, Windows® 2000 Professional) Pentium® 150MHz or more (Windows® Me) Memory: 16MB or more (Windows® 95), 24MB or more (Windows® 98) 32MB or more (Windows® Me, Windows NT® Workstation 4.0, Windows® 2000 Professional) Free hard disk space: 30MB or more Serial port used
OS	Windows® 95, Windows® 98, Windows® Me, Windows NT® Workstation 4.0, Windows® 2000 Professional (English version)
Display	One whose resolution is 800×600 or more and that can provide a high color (16 bit) display. Connectable with the above personal computer.
Keyboard	Connectable with the above personal computer.
Mouse	Connectable with the above personal computer. Note that a serial mouse is not used.
Printer	Connectable with the above personal computer.
Communication cable	MR-CPCATCBL3M When this cannot be used, refer to (3) Section 12.1.5 and fabricate.


Note 1. Windows and Windows NT are the registered trademarks of Microsoft Corporation in the United State and other countries.

Pentium is the registered trademarks of Intel Corporation.

^{2.} On some personal computers, this software may not run properly.


(b) Configuration diagram

1) When using RS-232C

2) When using RS-422

You can make multidrop connection of up to 32 axes.

Note. For cable connection, refer to section 14.1.1.

13.1.10 Power regeneration common converter

POINT

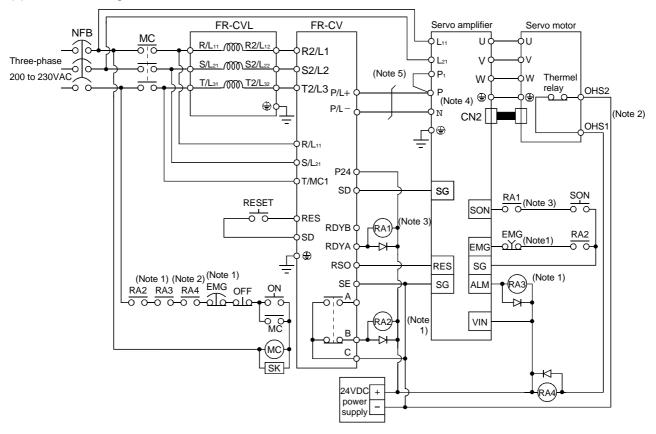
- For details of the power regeneration common converter FR-CV, refer to the FR-CV Installation Guide (IB(NA)0600075).
- Do not supply power to the main circuit power supply terminals (L1, L2,
 L3) of the servo amplifier. Doing so will fail the servo amplifier and FR-CV.
- Connect the DC power supply between the FR-CV and servo amplifier with correct polarity. Connection with incorrect polarity will fail the FR-CV and servo amplifier.
- Two or more FR-CV's cannot be installed to improve regeneration capability. Two or more FR-CV's cannot be connected to the same DC power supply line.

When using the power regeneration common converter, set parameter No. 0 to "01□□".

(1) Selection

The power regeneration common converter FR-CV can be used with 750W to 22kW servo amplifiers. There are the following restrictions on use of the FR-CV.

- (a) Up to six servo amplifiers can be connected to one FR-CV.
- (b) FR-CV capacity [W] \geq Total of rated capacities [W] of servo amplifiers connected to FR-CV \times 2
- (c) The total of used servo motor rated currents should be equal to or less than the applicable current [A] of the FR-CV.
- (d) Among the servo amplifiers connected to the FR-CV, the servo amplifier of the maximum capacity should be equal to or less than the maximum connectable capacity [W].


The following table lists the restrictions.

ltone		FR-CV-□						
Item	7.5K	11K	15K	22K	30K	37K	55K	
Maximum number of connected servo amplifiers	6							
Total of connectable servo amplifier capacities [kW]	3.75	5.5	7.5	11	15	18.5	27.5	
Total of connectable servo motor rated currents [A]	33	46	61	90	115	145	215	
Maximum servo amplifier capacity [kW]	3.5	5	7	11	15	15	22	

When using the FR-CV, always install the dedicated stand-alone reactor (FR-CVL).

Power regeneration common converter	Dedicated stand-alone reactor
FR-CV-7.5K(-AT)	FR-CVL-7.5K
FR-CV-11 K(-AT)	FR-CVL-11 K
FR-CV-15K(-AT)	FR-CVL-15K
FR-CV-22K(-AT)	FR-CVL-22K
FR-CV-30K(-AT)	FR-CVL-30K
FR-CV-37K	FR-CVL-37K
FR-CV-55K	FR-CVL-55K

(2) Connection diagram

Note 1. Configure a sequence that will shut off main circuit power in the following cases:

- Alarm occurred in the FR-CV or the servo amplifier.
- * Emergency stop is activated.
- 2. For the servo motor with thermal relay, configure a sequence that will shut off main circuit power when the thermal relay
- 3. For the servo amplifier, configure a sequence that will switch the servo on after the FR-CV is ready.
- 4. For 7kW or less servo amplifier, always remove the wiring (3.5kW or less: across P-D, 5k 7kW: across P-C) of built-in regenerative brake resistor.
- 5. For the amplifiers of 11k to 22kW, make sure to connect across P-P1. (Wiring is factory-connected.)

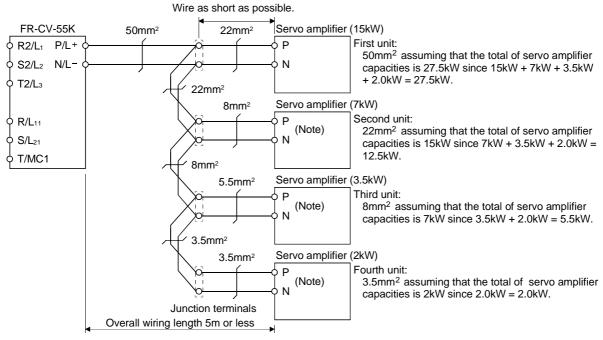
(3) Wires used for wiring

(a) Wire sizes

1) Across P-P, N-N

The following table indicates the connection wire sizes of the DC power supply (P, N terminals) between the FR-CV and servo amplifier. The used wires are based on the 600V vinyl wires.

Total of servo amplifier capacities [kW]	Wires[mm ²]
1 or less	2
2	3.5
5	5.5
7	8
11	14
15	22
22	50


2) Grounding

For grounding, use the wire of the size equal to or greater than that indicated in the following table, and make it as short as possible.

Power regeneration common converter	Grounding wire size [mm²]
FR-CV-7.5K TO FR-CV-15K	14
FR-CV-22K • FR-CV-30K	22
FR-CV-37K • FR-CV-55K	38

(b) Example of selecting the wire sizes

When connecting multiple servo amplifiers, always use junction terminals for wiring the servo amplifier terminals P, N. Also, connect the servo amplifiers in the order of larger to smaller capacities.

Note. For 7kW or less servo amplifier, always remove the wiring (3.5kW or less: across P-D, 5k • 7kW: across P-C) of built-in regenerative brake resistor.

(4) Other precautions

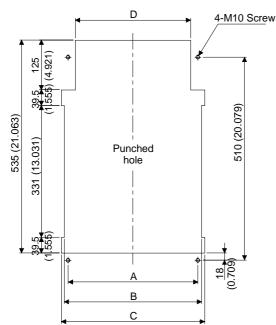
- (a) Always use the FR-CVL as the power factor improving reactor. Do not use the FR-BAL or FR-BEL.
- (b) The inputs/outputs (main circuits) of the FR-CV and servo amplifiers include high-frequency components and may provide electromagnetic wave interference to communication equipment (such as AM radios) used near them. In this case, interference can be reduced by installing the radio noise filter (FR-BIF) or line noise filter (FR-BSF01, FR-BLF).
- (c) The overall wiring length for connection of the DC power supply between the FR-CV and servo amplifiers should be 5m or less, and the wiring must be twisted.

(5) Specifications

Power regeneration common converter			7.5K	11K	15K	22K	30K	37K	55K
Item			7.51	TIK	1510	ZZIX	3010	3/10	3310
Total of connec	ctable servo amplifier	capacities [kW]	3.75	5.5	7.5	11	15	18.5	27.5
Maximum serv	vo amplifier capacity	[kW]	3.5	5	7	11	15	15	22
Total of connectable servo motor rate		servo motor rated [A]	33	46	61	90	115	145	215
Output	Regenerative	Short-time rating	Total capacity of applicable servo motors, 300% torque, 60s (Note1)						
	braking torque Continuous rating		100% torque						
	Rated input AC volt	age/frequency	Three-phase 200 to 220V 50Hz, 200 to 230V 60Hz						
Darrian aramalar	Permissible AC volta	Three-phase 170 to 242V 50Hz, 170 to 253V 60Hz							
Power supply	Permissible frequen	±5%							
	Power supply capaci	17	20	28	41	52	66	100	
Protective stru	icture (JEM 1030), co	oling system	Open type (IP00), forced cooling						
	Ambient temperatur	re	-10°C to +50°C (non-freezing)						
Environment	Ambient humidity		90%RH or less (non-condensing)						
Ambience		Indoors (without corrosive gas, flammable gas, oil mist, dust and dirt)							
Altitude, vibration			1000m or less above sea level, 5.9m/s ² or less (compliant with JIS C 0040)						
No-fuse breaker or leakage current breaker			30AF 30A	50AF 50A	100AF 75A	100AF 100A	225AF 125A	225AF 125A	225AF 175A
Magnetic conta	actor		S-N20	S-N35	S-N50	S-N65	S-N95	S-N95	S-N125

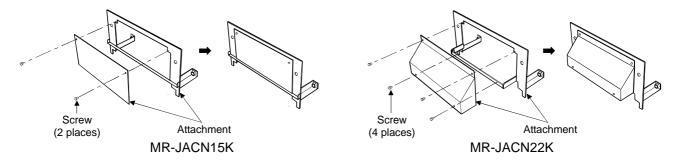
Note1. This is the time when the protective function of the FR-CV is activated. The protective function of the servo amplifier is activated in the time indicated in Section 12.1.

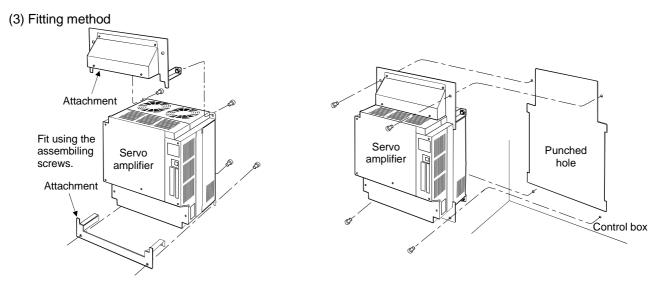
^{2.} When connecting the capacity of connectable servo amplifier, specify the value of servo amplifier.


13.1.11 Heat sink outside mounting attachment (MR-JACN)

Use the heat sink outside mounting attachment to mount the heat generation area of the servo amplifier in the outside of the control box to dissipate servo amplifier-generated heat to the outside of the box and reduce the amount of heat generated in the box, thereby allowing a compact control box to be designed.

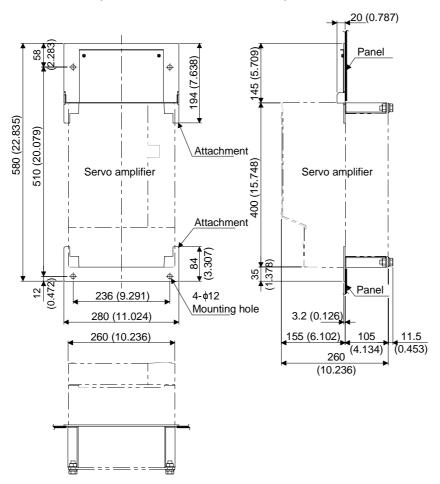
In the control box, machine a hole having the panel cut dimensions, fit the heat sink outside mounting attachment to the servo amplifier with the fitting screws (4 screws supplied), and install the servo amplifier to the control box.

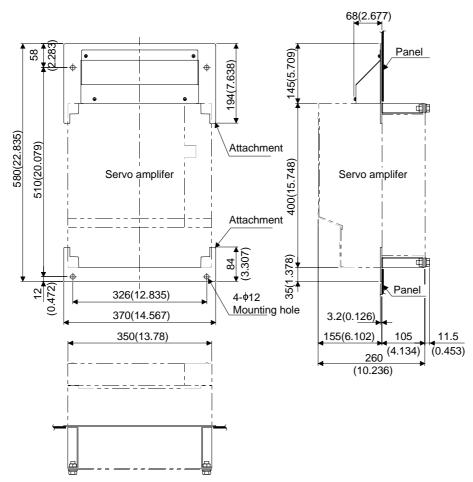

The environment outside the control box when using the heat sink outside mounting attachment should be within the range of the servo amplifier operating environment conditions.


(1) Panel cut dimensions

					[Unit: mm(in)]
Changeable dimension Model	А	В	С	D	Servo amplifier
MR-JACN15K	236 (9.291)	255 (10.039)	270 (10.63)	203 (7.992)	MR-J2S-11KA MR-J2S-15KA
MR-JACN22K	326 (12.835)	345 (13.583)	360 (14.173)	290 (11.417)	MR-J2S-22KA

(2) How to assemble the attachment for a heat sink outside mounting attachment

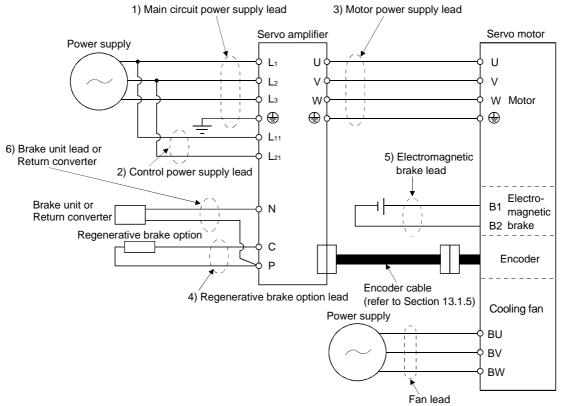



- a. Assembling the heat sink outside mounting attachment
- b. Installation to the control box

(4) Outline dimension drawing

(a) MR-JACN15K (MR-J2S-11KA, MR-J2S-15KA)

(b) MR-JACN22K (MR-J2S-22KA)


13.2 Auxiliary equipment

Always use the devices indicated in this section or equivalent. To comply with the EN Standard or UL/C-UL (CSA) Standard, use the products which conform to the corresponding standard.

13.2.1 Recommended wires

(1) Wires for power supply wiring

The following diagram shows the wires used for wiring. Use the wires given in this section or equivalent.

The following table lists wire sizes. The wires used assume that they are 600V vinyl wires and the wiring distance is 30m(98.4ft) max. If the wiring distance is over 30m(98.4ft), choose the wire size in consideration of voltage drop.

The alphabets (a, b, c) in the table correspond to the crimping terminals (Table 13.2) used to wire the servo amplifier. For connection with the terminal block TE2 of the MR-J2S-100A or less, refer to Section 3.11.

The servo motor side connection method depends on the type and capacity of the servo motor. Refer to Section 3.8.

To comply with the UL/C-UL (CSA) Standard, use UL-recognized copper wires rated at 60° C (140° F) or more for wiring.

Table 13.1 Recommended wires

_						
0 115			(Note 1) Wires	[mm ²]		
Servo amplifier	1) L1 • L2 • L3 • 🖶	2) L11 • L21	3) U · V · W · P ₁ · P · 🗎	4) P · C · N	5) B1 · B2	6) BU • BV • BW
MR-J2S-10A(1)						
MR-J2S-20A(1)						
MR-J2S-40A(1)	9 (AWC14) . a		1.25 (AWG16) : a			
MR-J2S-60A	2 (AWG14) : a					
MR-J2S-70A				2 (AWC14) . c		
MR-J2S-100A			2 (AWG14) : a	2 (AWG14) : a		
MR-J2S-200A	3.5 (AWG12) : b	1.25	3.5 (AWG12) : b		1 05 (AMC10)	
MR-J2S-350A		(AWG16)	(Note 2)		1.25 (AWG16)	
MIK-323-330A	5.5 (AWG10) : b		5.5 (AWG10) : b			\
MR-J2S-500A			5.5 (AWG10) : b			\
MR-J2S-700A	8 (AWG8) : c		8 (AWG8) : c	3.5(AWG12) : b		\
MR-J2S-11KA	14 (AWG6) :d		22 (AWG4) :e			
MR-J2S-15KA	22 (AWG4) :e		30 (AWG2) :f	5.5(AWG10) : b		2(AWG14)
MR-J2S-22KA	50 (AWG1/0) :g		60 (AWG2/0) :g			

Note 1. For the crimping terminals and applicable tools, refer to table 13.2:

Use wires 6) of the following sizes with the brake unit (FR-BU) and power regeneration converter (FR-RC).

Model	Wires[mm ²]
FR-BU-15K	3.5(AWG12)
FR-BU-30K	5.5(AWG10)
FR-BU-55K	14(AWG6)
FR-RC-15K	14(AWG6)
FR-RC-30K	14(AWG6)
FR-RC-55K	22(AWG4)

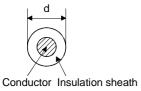
Table 13.2 Recommended crimping terminals

Cumbal	Servo	amplifier side crimping termin	nals		
Symbol	Crimping terminal	Applicable tool	Maker name		
a	32959	47387	Tues Electronics		
b	32968	59239	Tyco Electronics		
с	FVD8-5	Body YF-1 · E-4 Head YNE-38 Dice DH-111 · DH-121			
d	FVD14-6	Body YF-1 · E-4 Head YNE-38 Dice DH-112 · DH-122			
e	FVD22-6	Body YF-1 · E-4 Head YNE-38 Dice DH-113 · DH-123	Japan Solderless Terminal		
(Note 1 • 2)	38-S6	Body YPT-60-21 Dice TD-124 • TD-112 Body YF-1 • E-4 Head YET-60-1 Dice TD-124 • TD-112			
	R38-6S	NOP60 NOM60	NICHIFU		
g	(Note)R60-8	Body YDT-60-21 Dice TD-125 • TD-113 Body YF-1 • E-4 Head YET-60-1 Dice TD-125 • TD-113	Japan Solderless Terminal		

Note 1. Cover the crimped portion with an insulating tape.

^{2. 3.5}mm² for use of the HC-RFS203 servo motor.

^{2.} Always use the recommended crimping terminals since they may not be installed depending on the size.


(2) Wires for cables

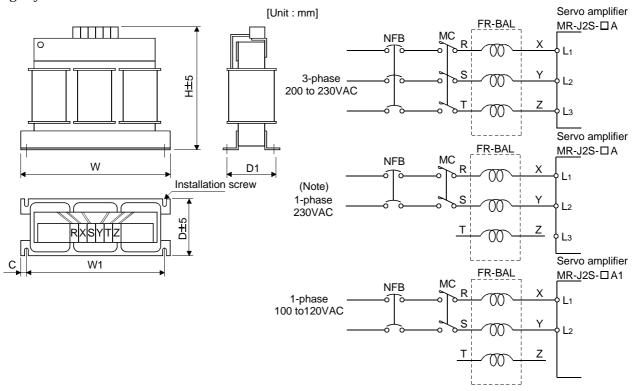
When fabricating a cable, use the wire models given in the following table or equivalent:

Table 13.3 Wires for option cables

	L th-	0	Nimakan	(Characteristics of	one core	(Note 3)	
Model	Length	Core size	Number of Cores	Structure	Conductor	Insulation coating	Finishing	Wire model
	[111(11/]	[]	01 00103	[Wires/mm]	$resistance[\Omega/mm]$	ODd[mm] (Note 1)	OD [mm]	
	2 to 10	0.08	12	7/0 127	222	0.38	5.6	UL20276 AWG#28
MR- ICCBI □M-I	(6.56 to 32.8)	0.00	(6 pairs)	170.127	222	0.00	0.0	6pair (BLAC)
WIN SCOBELINI E	20 - 30	0.3		12/0 18	62	1.2	8.2	UL20276 AWG#22
	` ,	0.0	` 1 /	12/0.10	02	1.2	0.2	6pair (BLAC)
	-	0.2		40/0.08	105	0.88	7.2	(Note 2)
MR-JCCBL□M-H	(,		` 1 /					A14B2343 6P
		0.2		40/0.08	105	0.88	8.0	(Note 2)
	,		` 1 /				0.0	A14B0238 7P
MR-JHSCBL□M-L (6.56 • 16.4)		0.08	-	7/0 127	222	0.38	4.7	UL20276 AWG#28
	(,	- (` 1 ′					4pair (BLAC)
		0.3	3	12/0.18	62	1.2	8.2	UL20276 AWG#22
	, ,		` 1 /					6pair (BLAC)
MR-JHSCBL□M-H (6.56 · 16.4) 10 to 50		0.2	-	40/0.08	105	0.88	6.5	(Note 2)
	` ,							A14B2339 4P
	10 to 50	0.2		40/0.08	105	0.88	7.2	(Note 2)
	, ,							A14B2343 6P
	_	0.2	-	40/0.08	105	0.88	6.5	(Note 2)
MR-ENCBL□M-H	` ′							A14B2339 4P
		0.2		40/0.08	3 105	0.88	7.2	(Note 2)
	(32.8 to 164)							A14B2343 6P
MR-CPCATCBL3M	3 (9.84)	0.08	-	7/0.127	222	0.38	4.6	UL20276 AWG#28
			(3 pairs)					3pair (BLAC)
	0.5 to 5		20					UL20276 AWG#28
MR-J2HBUS□M		0.08	-	7/0.127	222	0.38	6.1	10pair (CREAM)
	(1.04 to 10.4)		(10 pans)					Topan (Cittanvi)
	IR-JCCBL□M-L IR-JCCBL□M-H IR-JHSCBL□M-H IR-JHSCBL□M-H IR-ENCBL□M-H	Model [m(ft)] 2 to 10 (6.56 to 32.8) 20 · 30 (65.6 · 98.4) 2 · 5 (6.56 · 16.4) 10 to 50 (32.8 to 164) 2 · 5 (6.56 · 16.4) 10 to 30 (32.8 to 98.4) 2 · 5 (6.56 · 16.4) 10 to 50 (32.8 to 164) 2 · 5 (6.56 · 16.4) 10 to 50 (32.8 to 164) 2 · 5 (6.56 · 16.4) 10 to 50 (32.8 to 164) 4R-ENCBL□M-H MR-ENCBL□M-H MR-ENCBL□M-H AR-CPCATCBL3M 3 (9.84)	Model [m(tt)] [mm²]	Model [m(ft)] [mm²] of Cores	Model	Model [m(ft)] [mm²] of Cores Structure Conductor resistance [Ω/mm]	Model [m(ft)] [mm²] of Cores Structure [Wires/mm] Conductor Insulation coating ODd[mm] (Note 1)	Model [m(it)] [mm²] of Cores Structure Conductor Insulation coating Finishing ODE Mires/mm resistance [c]/mm] ODE Mires/mm ODE ODE

Note 1. d is as shown below:

- 2. Purchased from Toa Electric Industry
- 3. Standard OD. Max. OD is about 10% greater.

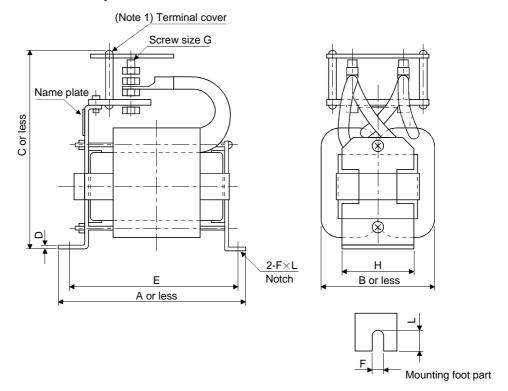

13.2.2 No-fuse breakers, fuses, magnetic contactors

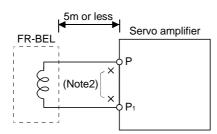
Always use one no-fuse breaker and one magnetic contactor with one servo amplifier. When using a fuse instead of the no-fuse breaker, use the one having the specifications given in this section.

Servo amplifier	No-fuse breaker		Fuse		Magnetic contactor
Servo ampimer	NO-luse bleaker	Class	Current [A]	Voltage [V]	Magnetic contactor
MR-J2S-10A(1)	30A frame 5A	K5	10		
MR-J2S-20A	30A frame 5A	K5	10		
MR-J2S-40A · 20A1	30A frame 10A	K5	15		S-N10
MR-J2S-60A · 40A1	30A frame 15A	K5	20		S-IV10
MR-J2S-70A	30A frame 15A	K5	20		
MR-J2S-100A	30A frame 15A	K5	25		
MR-J2S-200A	30A frame 20A	K5	40	AC250	S-N18
MR-J2S-350A	30A frame 30A	K5	70		S-N20
MR-J2S-500A	50A frame 50A	K5	125		S-N35
MR-J2S-700A	100A frame 75A	K5	150		S-N50
MR-J2S-11KA	100A frame 100A	K5	200		S-N65
MR-J2S-15KA	225A frame 125A	K5	250		S-N95
MR-J2S-22KA	225A frame 175A	K5	350	,	S-N25

13.2.3 Power factor improving reactors

The input power factor is improved to be about 90%. For use with a 1-phase power supply, it may be slightly lower than 90%.




Note. For the 1-phase 230V power supply, Connect the power supply to L1, L2 and leave L3 open.

Servo amplifier	Model			Dimensi	ons [mm (in)]		Mounting	Terminal	Mass
Servo ampliner	Model	W	W1	Н	D	D1	С	screw size	screw size	[kg (lb)]
MR-J2S-10A(1)/20A	FR-BAL-0.4K	135 (5.31)	120 (4.72)	115 (4.53)	59 (2.32)	45-2.5 (1.77-0.098)	7.5 (0.29)	M4	M3.5	2.0 (4.4)
MR-J2S-40A/20A1	FR-BAL-0.75K	135 (5.31)	120 (4.72)	115 (4.53)	69 (2.72)	$57^{0}_{-2.5} (2.24^{0}_{-0.098})$	7.5 (0.29)	M4	M3.5	2.8 (6.17)
MR-J2S-60A/70A/40A1	FR-BAL-1.5K	160 (6.30)	145 (5.71)	140 (5.51)	71 (2.79)	55-2.5 (2.17-0.098)	7.5 (0.29)	M4	M3.5	3.7 (8.16)
MR-J2S-100A	FR-BAL-2.2K	160 (6.30)	145 (5.71)	140 (5.51)	91 (3.58)	$75^{0}_{-2.5} (2.95^{0}_{-0.098})$	7.5 (0.29)	M4	M3.5	5.6 (12.35)
MR-J2S-200A	FR-BAL-3.7K	220 (8.66)	200 (7.87)	192 (7.56)	90 (3.54)	$70^{0}_{-2.5} (2.76^{0}_{-0.098})$	10 (0.39)	M5	M4	8.5 (18.74)
MR-J2S-350A	FR-BAL-7.5K	220 (8.66)	200 (7.87)	194 (7.64)	120 (4.72)	$100^{0}_{\text{-}2.5}\ (3.94^{0}_{\text{-}0.098})$	10 (0.39)	M5	M5	14.5 (32.0)
MR-J2S-500A	FR-BAL-11K	280 (11.02)	255 (10.04)	220 (8.66)	135 (5.31)	$100^{0}_{\text{-}2.5} \ (3.94^{0}_{\text{-}0.098})$	12.5 (0.49)	M6	M6	19 (41.9)
MR-J2S-700A/11KA	FR-BAL-15K	295 (11.61)	270 (10.62)	275 (10.83)	133 (5.24)	110-2.5 (4.33-0.098)	12.5 (0.49)	M6	M6	27 (59.5)
MR-J2S-15KA	FR-BAL-22K	290 (11.41)	240 (9.75)	301 (11.85)	199 (7.84)	170±5 (6.69±0.2)	25 (0.98)	M8	M8	35 (77.16)
MR-J2S-22KA	FR-BAL-30K	290 (11.41)	240 (9.75)	301 (11.85)	219 (8.62)	190±5 (7.48±0.2)	25 (0.98)	M8	M8	43 (94.79)

13.2.4 Power factor improving DC reactors

The input power factor is improved to be about 95%.

Note1. Fit the supplied terminal cover after wiring.

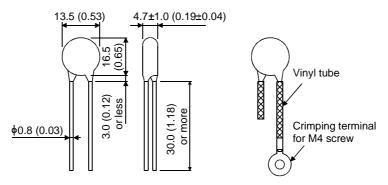
2. When using the DC reactor, remove the short-circuit bar across P-P1.

	Power factor				Dimer	nsions [mr	n (in)]				Torminal	Moss	Used wire
Servo amplifier	improving DC reactors A		В	С	D	Е	F	L	G	Н	Terminal screw size	Mass [kg (lb)]	[mm ²]
MR-J2S-11KA	FR-BEL-15K	170(6.69)	93(3.66)	170(6.69)	2.3(0.09)	155(6.10)	6(0.24)	14(0.55)	M8	56(2.21)	M5	3.8(8.38)	22(AWG4)
MR-J2S-15KA	FR-BEL-22K	185(7.28)	119(4.69)	182(7.17)	2.6(0.10)	165(6.49)	7(0.28)	15(0.59)	M8	70(2.77)	M6	5.4(11.91)	30(AWG2)
MR-J2S-22KA	FR-BEL-30K	185(7.28)	119(4.69)	201(7.91)	2.6(0.10)	165(6.49)	7(0.28)	15(0.59)	M8	70(2.77)	M6	6.7(14.77)	60(AWG1/0)

13.2.5 Relays

The following relays should be used with the interfaces:

Interface	Selection example
Relay used for digital input command signals (interface	To prevent defective contacts , use a relay for small signal
DI-1)	(twin contacts).
	(Ex.) Omron : type G2A , MY
Relay used for digital output signals (interface DO-1)	Small relay with 12VDC or 24VDC of 40mA or less
	(Ex.) Omron : type MY


13.2.6 Surge absorbers

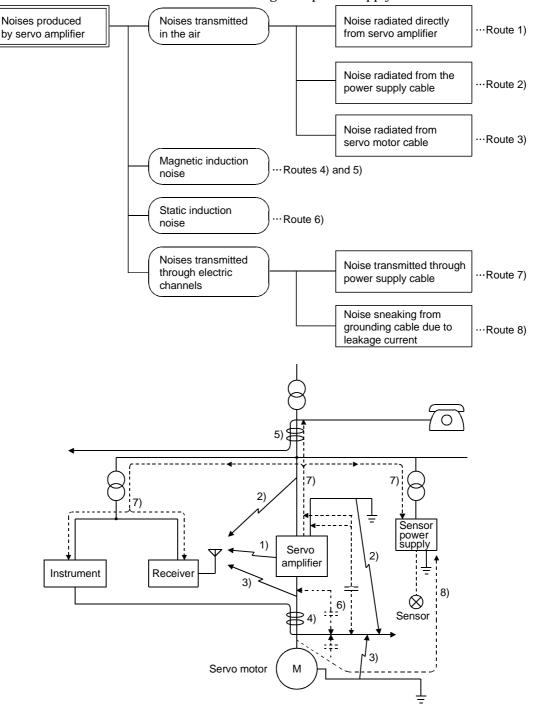
A surge absorber is required for the electromagnetic brake. Use the following surge absorber or equivalent. Insulate the wiring as shown in the diagram.

	Maximum rating						Static			
Permissib volta		Surge immunity	Energy immunity	Rated power	Maximum limit voltage				capacity (reference value)	Varistor voltage rating (range) V1mA
AC[Vma]	DC[V]	[A]	[J]	[W]	[A]	[V]	[pF]	[V]		
140	180	(Note) 500/time	5	0.4	25	360	300	220 (198 to 242)		

Note. 1 time = $8 \times 20 \mu s$

(Example) ERZV10D221 (Matsushita Electric Industry) TNR-10V221K (Nippon chemi-con) Outline drawing [mm] ([in]) (ERZ-C10DK221)

13.2.7 Noise reduction techniques


Noises are classified into external noises which enter the servo amplifier to cause it to malfunction and those radiated by the servo amplifier to cause peripheral devices to malfunction. Since the servo amplifier is an electronic device which handles small signals, the following general noise reduction techniques are required.

Also, the servo amplifier can be a source of noise as its outputs are chopped by high carrier frequencies. If peripheral devices malfunction due to noises produced by the servo amplifier, noise suppression measures must be taken. The measures will vary slightly with the routes of noise transmission.

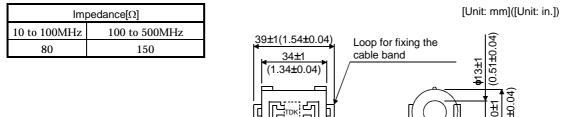
(1) Noise reduction techniques

- (a) General reduction techniques
 - Avoid laying power lines (input and output cables) and signal cables side by side or do not bundle them together. Separate power lines from signal cables.
 - Use shielded, twisted pair cables for connection with the encoder and for control signal transmission, and connect the shield to the SD terminal.
 - Ground the servo amplifier, servo motor, etc. together at one point (refer to Section 3.10).

- (b) Reduction techniques for external noises that cause the servo amplifier to malfunction. If there are noise sources (such as a magnetic contactor, an electromagnetic brake, and many relays which make a large amount of noise) near the servo amplifier and the servo amplifier may malfunction, the following countermeasures are required.
 - Provide surge absorbers on the noise sources to suppress noises.
 - Attach data line filters to the signal cables.
 - Ground the shields of the encoder connecting cable and the control signal cables with cable clamp fittings.
- (c) Techniques for noises radiated by the servo amplifier that cause peripheral devices to malfunction Noises produced by the servo amplifier are classified into those radiated from the cables connected to the servo amplifier and its main circuits (input and output circuits), those induced electromagnetically or statically by the signal cables of the peripheral devices located near the main circuit cables, and those transmitted through the power supply cables.

Noise transmission route	Suppression techniques
1) 2) 3)	When measuring instruments, receivers, sensors, etc. which handle weak signals and may malfunction due to noise and/or their signal cables are contained in a control box together with the servo amplifier or run near the servo amplifier, such devices may malfunction due to noises transmitted through the air. The following techniques are required. 1. Provide maximum clearance between easily affected devices and the servo amplifier. 2. Provide maximum clearance between easily affected signal cables and the I/O cables of the servo amplifier. 3. Avoid laying the power lines (Input cables of the servo amplifier) and signal cables side by side or bundling them together. 4. Insert a line noise filter to the I/O cables or a radio noise filter on the input line.
4) 5) 6)	 Use shielded wires for signal and power cables or put cables in separate metal conduits. When the power lines and the signal cables are laid side by side or bundled together, magnetic induction noise and static induction noise will be transmitted through the signal cables and malfunction may occur. The following techniques are required. Provide maximum clearance between easily affected devices and the servo amplifier. Provide maximum clearance between easily affected signal cables and the I/O cables of the servo amplifier. Avoid laying the power lines (I/O cables of the servo amplifier) and signal cables side by side or bundling them together. Use shielded wires for signal and power cables or put the cables in separate metal conduits.
7)	When the power supply of peripheral devices is connected to the power supply of the servo amplifier system, noises produced by the servo amplifier may be transmitted back through the power supply cable and the devices may malfunction. The following techniques are required. 1. Insert the radio noise filter (FR-BIF) on the power cables (Input cables) of the servo amplifier. 2. Insert the line noise filter (FR-BSF01 • FR-BLF) on the power cables of the servo amplifier.
8)	When the cables of peripheral devices are connected to the servo amplifier to make a closed loop circuit, leakage current may flow to malfunction the peripheral devices. If so, malfunction may be prevented by disconnecting the grounding cable of the peripheral device.

(2) Noise reduction products

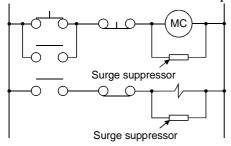

(a) Data line filter

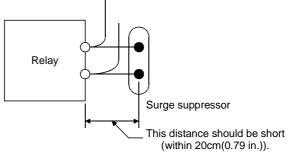
Noise can be prevented by installing a data line filter onto the encoder cable, etc.

For example, the ZCAT3035-1330 of TDK and the ESD-SR-25 of NEC Tokin make are available as data line filters.

As a reference example, the impedance specifications of the ZCAT3035-1330 (TDK) are indicated below

This impedances are reference values and not guaranteed values.

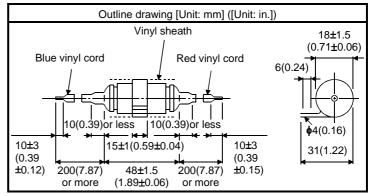

Product name


Outline drawing (ZCAT3035-1330)

Lot number

(b) Surge suppressor

The recommended surge suppressor for installation to an AC relay, AC valve, AC electromagnetic brake or the like near the servo amplifier is shown below. Use this product or equivalent.



(Ex.) 972A.2003 50411 (Matsuo Electric Co., Ltd. -200VAC rating)

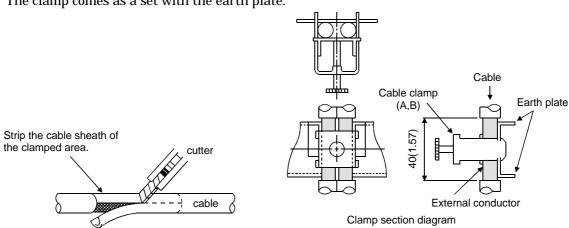
Diode

Rated voltage AC[V]	C [µF]	R [Ω]	Test voltage AC[V]
200	0.5	50 (1W)	Across T-C 1000(1 to 5s)

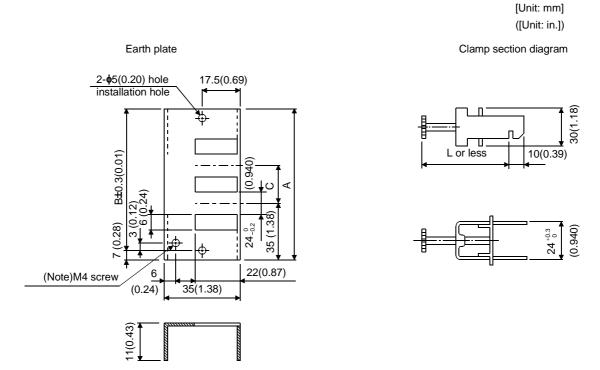
Note that a diode should be installed to a DC relay, DC valve or

Maximum voltage: Not less than 4 times the drive voltage of

the relay or the like


Maximum current: Not less than twice the drive current of the relay or the like

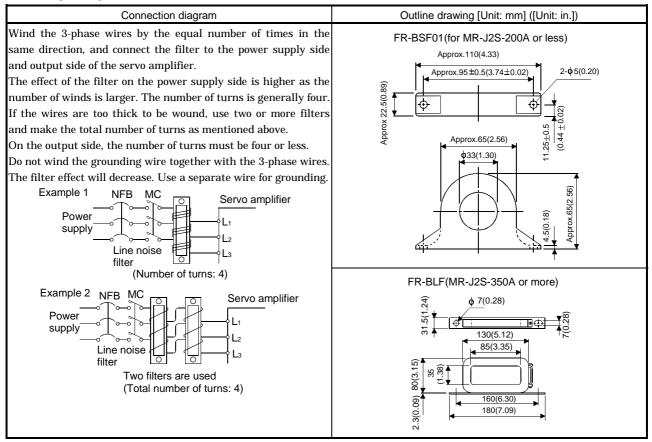
(c) Cable clamp fitting (AERSBAN□-SET)


Generally, the earth of the shielded cable may only be connected to the connector's SD terminal. However, the effect can be increased by directly connecting the cable to an earth plate as shown below.

Install the earth plate near the servo amplifier for the encoder cable. Peel part of the cable sheath to expose the external conductor, and press that part against the earth plate with the cable clamp. If the cable is thin, clamp several cables in a bunch.

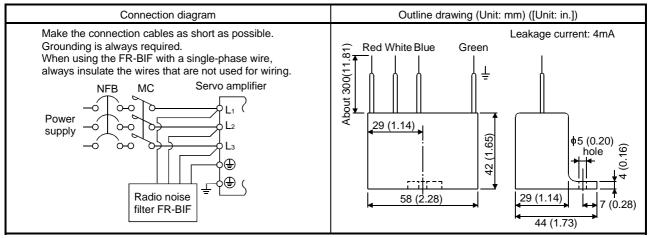
The clamp comes as a set with the earth plate.

Outline drawing


Note. Screw hole for grounding. Connect it to the earth plate of the control box.

Туре	Α	В	С	Accessory fittings	
AERSBAN-DSET	100	86	30	clamp A: 2pcs.	
ALKSBAN DSET	(3.94)	(3.39)	(1.18)	cramp 11. 2pcs.	
AERSBAN-ESET	70	56		clomp P: 1pc	
AERODAN-ESET	(2.76)	(2.20)		clamp B: 1pc.	

Clamp fitting	L
۸	70
Α	(2.76)
D	45
В	(1.77)

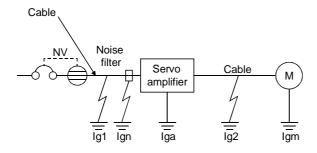

(d) Line noise filter (FR-BLF, FR-BSF01)

This filter is effective in suppressing noises radiated from the power supply side and output side of the servo amplifier and also in suppressing high-frequency leakage current (zero-phase current) especially within 0.5MHz to 5MHz band.

(e) Radio noise filter (FR-BIF)...for the input side only

This filter is effective in suppressing noises radiated from the power supply side of the servo amplifier especially in 10MHz and lower radio frequency bands. The FR-BIF is designed for the input only.

13.2.8 Leakage current breaker


(1) Selection method

High-frequency chopper currents controlled by pulse width modulation flow in the AC servo circuits. Leakage currents containing harmonic contents are larger than those of the motor which is run with a commercial power supply.

Select a leakage current breaker according to the following formula, and ground the servo amplifier, servo motor, etc. securely.

Make the input and output cables as short as possible, and also make the grounding cable as long as possible (about 30cm (11.8 in)) to minimize leakage currents.

Rated sensitivity current $\geq 10 \cdot \{Ig1+Ign+Iga+K \cdot (Ig2+Igm)\}$ [mA](13.2)

K: Constant considering the harmonic contents					
Leakage current b					
Type	Mitsubishi	K			
туре	products				
	NV-SP				
Models provided with	NV-SW				
harmonic and surge	NV-CP	1			
reduction techniques	NV-CW				
	NV-L				
	BV-C1				
General models	NFB	3			
	NV-L				

Ig1: Leakage current on the electric channel from the leakage current breaker to the input terminals of the servo amplifier (Found from Fig. 13.1.)

Ig2: Leakage current on the electric channel from the output terminals of the servo amplifier to the servo motor (Found from Fig. 13.1.)

Ign: Leakage current when a filter is connected to the input side (4.4mA per one FR-BIF)

Iga: Leakage current of the servo amplifier (Found from Table 13.6.)

Igm: Leakage current of the servo motor (Found from Table 13.5.)

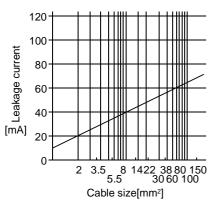


Fig. 13.1 Leakage current example (Ig1, Ig2) for CV cable run in metal conduit

Table 13.5	Servo motor's
	leakage current
	example (Igm)

Servo motor	Leakage			
output [kW]	current [mA]			
0.05 to 0.5	0.1			
0.6 to 1.0	0.1			
1.2 to 2.2	0.2			
3 to 3.5	0.3			
5	0.5			
7	0.7			
11	1.0			
15	1.3			
22	2.3			

Table 13.6 Servo amplifier's leakage current example (Iga)

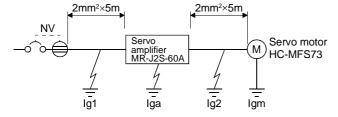

	110111-10-(1901)
Servo amplifier capacity [kW]	Leakage current [mA]
0.1 to 0.6	0.1
0.7 to 3.5	0.15
5 • 7	2
11 • 15	5.5
22	7

Table 13.7 Leakage circuit breaker selection example

Servo amplifier	Rated sensitivity current of leakage circuit breaker [mA]
MR-J2S-10A to MR-J2S-350A MR-J2S-10A1 to MR-J2S-40A1	15
MR-J2S-500A	30
MR-J2S-700A	50
MR-J2S-11KA to MR-J2S-22KA	100

(2) Selection example

Indicated below is an example of selecting a leakage current breaker under the following conditions:

Use a leakage current breaker generally available.

Find the terms of Equation (13.2) from the diagram:

$$Ig1 = 20 \cdot \frac{5}{1000} = 0.1 \text{ [mA]}$$

$$Ig2 = 20 \cdot \frac{5}{1000} = 0.1 \text{ [mA]}$$

Ign = 0 (not used)

$$Iga = 0.1 [mA]$$

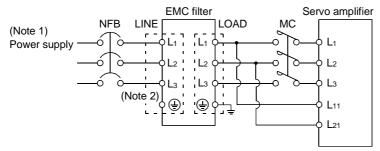
$$Igm = 0.1 [mA]$$

Insert these values in Equation (13.2):

$$Ig \ge 10 \cdot \{0.1+0+0.1+1 \cdot (0.1+0.1)\}$$

According to the result of calculation, use a leakage current breaker having the rated sensitivity current (Ig) of 4.0[mA] or more. A leakage current breaker having Ig of 15[mA] is used with the NV-SP/SW/CP/CW/HW series.

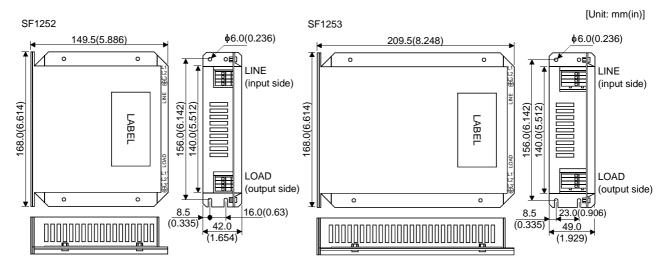
13.2.9 EMC filter

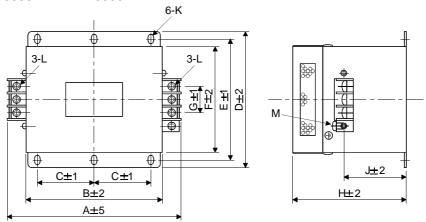

For compliance with the EMC directive of the EN Standard, it is recommended to use the following filter: Some EMC filters are large in leakage current.

(1) Combination with the servo amplifier

Conto amplifiar	Recomme	Maga [kg]/[lb])		
Servo amplifier	Model	Leakage current [mA]	Mass [kg]([lb])	
MR-J2S-10A to MR-J2S-100A MR-J2S-10A1 to MR-J2S-40A1	SF1252	38	0.75(1.65)	
MR-J2S-200A • MR-J2S-350A	SF1253	57	1.37(3.02)	
MR-J2S-500A	(Note) HF3040A-TM	1.5	5.5(12.13)	
MR-J2S-700A	(Note) HF3050A-TM	1.5	6.7(14.77)	
MR-J2S-11KA	(Note) HF3060A-TMA	3.0	10.0(22.05)	
MR-J2S-15KA	(Note) HF3080A-TMA	3.0	13.0(28.66)	
MR-J2S-22KA	(Note) HF3100A-TMA	3.0	14.5(31.97)	

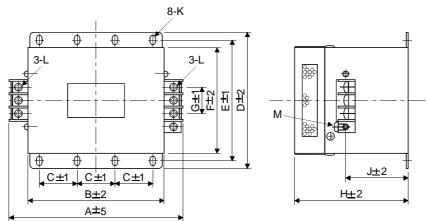
Note: Soshin Electric A surge protector is separately required to use any of these EMC filters. (Refer to the EMC Installation Guidelines.)


(2) Connection example


Note 1. For 1-phase 230VAC power supply, connect the power supply to L_1,L_2 and leave L_3 open. There is no L_3 for 1-phase 100 to 120VAC power supply.

2. Connect when the power supply has earth.

(3) Outline drawing



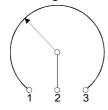
HF3040A-TM • HF3050A-TM • HF3060A-TMA

Madal					D	imension	s [mm(in)]				
Model	Α	В	С	D	E	F	G	Н	J	K	┙	М
LIFTOO AGA FEN A	260	210	85	155	140	125	44	140	70		3.45	244
HF3040A-TM	(10.24)	(8.27)	(8.35)	(6.10)	(5.51)	(4.92)	(1.73)	(5.51)	(2.76)	R3.25	M5	M4
LIEGOTOA TM	290	240	100	190	175	160	44	170	100	(0.13),	M6	244
HF3050A-TM	(11.42)	(9.45)	(3.94)	(7.48)	(6.89)	(6.29)	(1.73)	(6.69)	(3.94)	length		M4
LIEGOROA ENA	290	240	100	190	175	160	44	230	160	8 (0.32)	140	3.4.4
HF3060A-TMA	(11.42)	(9.45)	(3.94)	(7.48)	(6.89)	(6.29)	(1.73)	(9.06)	(6.29)		M6	M4

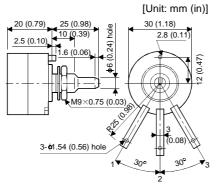
HF3080A-TMA • HF3100A-TMA

Madal					D	imension	ıs [mm(in)]				
Model	Α	В	С	D	E	F	G	Н	J	K	L	М
HF3080A-TMA	405	250	100	000	000	100	50	010	105	R4.25		
HF3100A-TMA	405 (15.95)	350 (13.78)	100 (3.94)	220 (8.66)	200 (7.87)	180 (7.09)	56 (2.21)	210 (8.27)	135 (5.32)	(0.17), length 12 (0.47)	M8	M6

13.2.10 Setting potentiometers for analog inputs

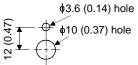

The following variable resistors are available for use with analog inputs.

(1) Single-revolution type


WA2WYA2SEBK2KΩ (Japan Resistor make)

Rated power	Resistance	Resistance tolerance	Dielectric strength (for 1 minute)	Insulation resistance	Mechanical rotary angle	Rotary torque
2W	2kΩ	±10%	700V A.C	$100 M\Omega$ or more	300° ±5°	10 to 100g-cm or less

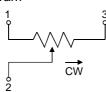
Connection diagram



Outline dimension drawing

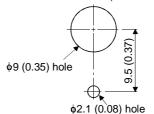
Panel hole machining diagram

[Unit: mm (in)]


(2) Multi-revolution type

Position meter: RRS10M202 (Japan Resistor make)

Analog dial: 23M (Japan Resistor make)


Rated power	Resistance	Resistance tolerance	Dielectric strength (for 1 minute)	Insulation resistance	Mechanical rotary angle	Rotary torque
1W	2kΩ	±10%	700V A.C	$1000 M\Omega$ or more	$3600^{\circ} {}^{+10^{\circ}}_{-0^{\circ}}$	100g-cm or less

Connection diagram

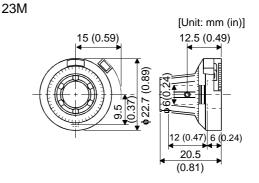
Panel hole machining diagram

[Unit: mm (in)] Panel thickness: 2 to 6 (0.08 to 0.24)

Outline dimension drawing RRS10 M202

[Unit: mm (in)]

2) 30° 3)


M9×0.75 (0.03)

(0.05)

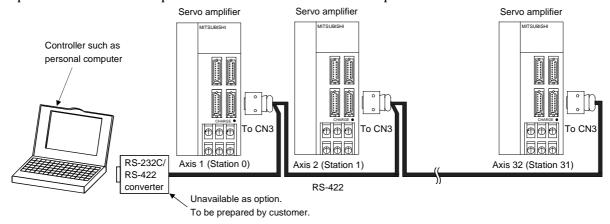
(0.05)

(0.05)

(0.05)

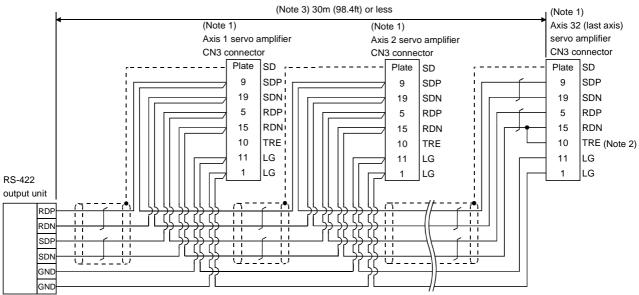
14. COMMUNICATION FUNCTIONS

This servo amplifier has the RS-422 and RS-232C serial communication functions. These functions can be used to perform servo operation, parameter changing, monitor function, etc.


However, the RS-422 and RS-232C communication functions cannot be used together. Select between RS-422 and RS-232C with parameter No.16. (Refer to Section 14.2.2.)

14.1 Configuration

14.1.1 RS-422 configuration

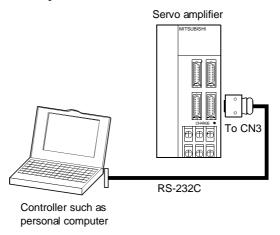

(1) Outline

Up to 32 axes of servo amplifiers from stations 0 to 31 can be operated on the same bus.

(2) Cable connection diagram

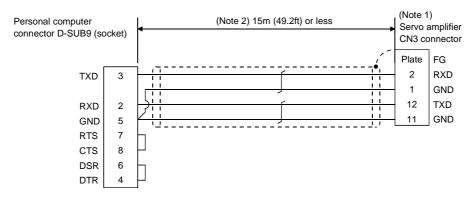
Wire as shown below:

Note 1. Connector set MR-J2CN1 (3M)


Connector: 10120-3000VE Shell kit: 10320-52F0-008

- 2. In the last axis, connect TRE and RDN.
- 3. 30m (98.4ft) or less in environment of little noise.

14.1.2 RS-232C configuration


(1) Outline

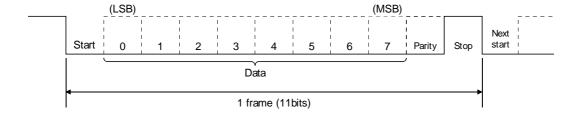
A single axis of servo amplifier is operated.

(2) Cable connection diagram

Wire as shown below. The communication cable for connection with the personal computer (MR-CPCATCBL3M) is available. (Refer to Section 13.1.4.)

Note 1. Connector set MR-J2CN1 (3M) Connector: 10120-6000EL

Shell kit: 10320-3210-000

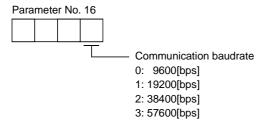

2. 15m (49.2ft) or less in environment of little noise. However, this distance should be 3m (9.84ft) or less for use at 38400bps or more baudrate.

14.2 Communication specifications

14.2.1 Communication overview

This servo amplifier is designed to send a reply on receipt of an instruction. The device which gives this instruction (e.g. personal computer) is called a master station and the device which sends a reply in response to the instruction (servo amplifier) is called a slave station. When fetching data successively, the master station repeatedly commands the slave station to send data.

Item	Description
Baudrate	9600/19200/38400/57600 asynchronous system
	Start bit : 1 bit
Transfer code	Data bit : 8 bits
i ransier code	Parity bit : 1 bit (even)
	Stop bit : 1 bit
Transfer protocol	Character system, half-duplex communication system

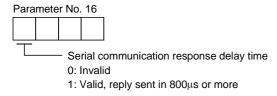

14.2.2 Parameter setting

When the RS-422/RS-232C communication function is used to operate the servo, set the communication specifications of the servo amplifier in the corresponding parameters.

After setting the values of these parameters, they are made valid by switching power off once, then on again.

(1) Serial communication baudrate

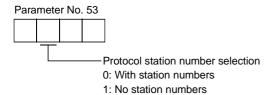
Choose the communication speed. Match this value to the communication speed of the sending end (master station).


(2) Serial communication selection

Select the RS-422 or RS-232C communication standard. RS-422 and RS-232C cannot be used together.

(3) Serial communication response delay time

Set the time from when the servo amplifier (slave station) receives communication data to when it sends back data. Set "0" to send back data in less than $800\mu s$ or "1" to send back data in $800\mu s$ or more.



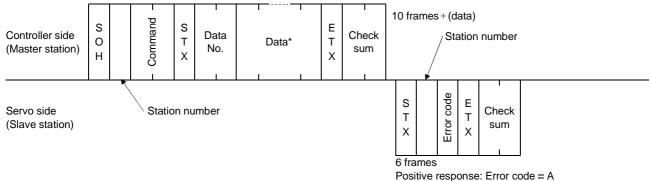
(4) Station number setting

Set the station number of the servo amplifier in parameter No. 15. The setting range is stations 0 to 31.

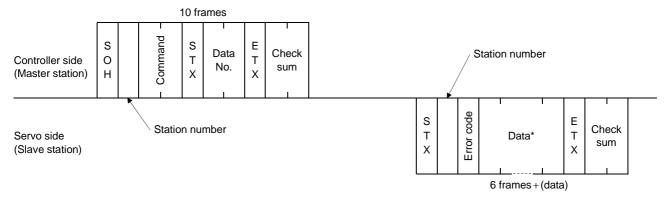
(5) Protocol station number selection

When communication is made without setting station numbers to servo amplifiers as in the MR-J2-A servo amplifiers, choose "no station numbers" in parameter No. 53. The communication protocol will be free of station numbers.

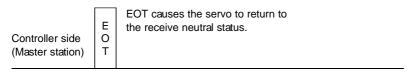
14.3 Protocol


POINT

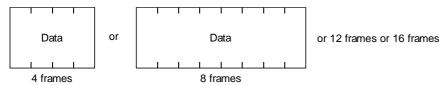
• Whether station number setting will be made or not must be selected if the RS-232C communication function is used. Note that choosing "no station numbers" in parameter No. 53 will make the communication protocol free of station numbers as in the MR-J2-A servo amplifiers.


Since up to 32 axes may be connected to the bus, add a station number to the command, data No., etc. to determine the destination servo amplifier of data communication. Set the station number to each servo amplifier using the parameter. Transmission data is valid for the servo amplifier of the specified station number or group.

When "*" is set as the station number added to the transmission data, the transmission data is made valid for all servo amplifiers connected. However, when return data is required from the servo amplifier in response to the transmission data, set "0" to the station number of the servo amplifier which must provide the return data.


(1) Transmission of data from the controller to the servo

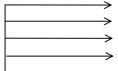
(2) Transmission of data request from the controller to the servo


(3) Recovery of communication status by time-out

Servo side (Slave station)

(4) Data frames

The data length depends on the command.


14.4 Character codes

(1) Control codes

Code name	Hexadecimal (ASCII code)	Description	Personal computer terminal key operation (General)
SOH	01H	start of head	ctrl + A
STX	02H	start of text	ctrl + B
ETX	03H	end of text	ctrl + C
EOT	04H	end of transmission	ctrl + D

(2) Codes for data

ASCII unit codes are used.

b8	0	0	0	0	0	0	0	0
b7	0	0	0	0	1	1	1	1
b6	0	0	1	1	0	0	1	1
\mathbf{b}_5	0	1	0	1	0	1	0	1

1				
bs to	b ₄	b ₃	b ₂	b ₁
	0	0	0	0
	0	0	0	1
	0	0	1	0
	0	0	1	1
	0	1	0	0
	0	1	0	1
	0	1	1	0
	0	1	1	1
	1	0	0	0
	1	0	0	1
	1	0	1	0
	1	0	1	1
	1	1	0	0
	1	1	0	1
	1	1	1	0
	1	1	1	1

C R	0	1	2	3	4	5	6	7
0	NUL	DLE	Space	0	@	P	,	p
1	SOH	DC ₁	!	1	Α	Q	a	q
2	STX	DC ₂	u	2	В	R	b	r
3	ETX	DC ₃	#	3	С	S	С	S
4			\$	4	D	Т	d	t
5			%	5	E	U	e	u
6			&	6	F	V	f	v
7			•	7	G	W	gg	W
8			(8	Н	X	h	X
9)	9	Ι	Y	i	y
10			*	:	J	Z	j	Z
11			+	;	K	[k	{
12			,	<	L	¥	l	
13			-	=	M]	m	}
14				>	N	^	n	_
15			/	?	0		0	DEL

(3) Station numbers

You may set 32 station numbers from station 0 to station 31 and the ASCII unit codes are used to specify the stations.

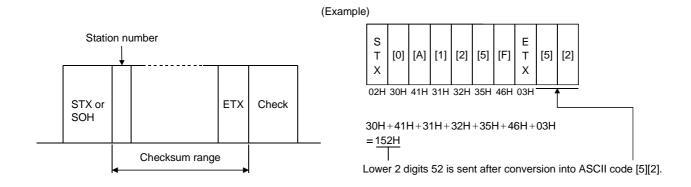
Station number	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ASCII code	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F

Station number	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
ASCII code	G	Н	Ι	J	K	L	M	N	О	P	Q	R	S	T	U	V

For example, "30H" is transmitted in hexadecimal for the station number of "0" (axis 1).

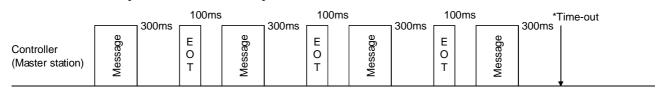
14.5 Error codes

Error codes are used in the following cases and an error code of single-code length is transmitted.


On receipt of data from the master station, the slave station sends the error code corresponding to that data to the master station.

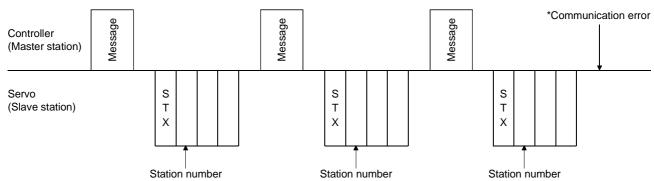
The error code sent in upper case indicates that the servo is normal and the one in lower case indicates that an alarm occurred.

Error	code	F	Decembring	Remarks			
Servo normal	Servo alarm	Error name	Description				
[A]	[a]	Normal operation	Normal operation Data transmitted was processed properly.				
[B]	[b]	Parity error	Parity error occurred in the transmitted data.				
[C]	[c]	Checksum error	Checksum error occurred in the transmitted data.				
[D]	[d]	Character error	Character not existing in the specifications was transmitted.	Na gatina naganana			
[E]	[e]	Command error	Command not existing in the specifications was transmitted.	Negative response			
[F]	[f]	Data No. error	Data No. not existing in the specifications was transmitted.				


14.6 Checksum

The check sum is a ASCII-coded hexadecimal representing the lower two digits of the sum of ASCII-coded hexadecimal numbers up to ETX, with the exception of the first control code (STX or SOH).

14.7 Time-out operation


The master station transmits EOT when the slave station does not start reply operation (STX is not received) 300[ms] after the master station has ended communication operation. 100[ms] after that, the master station retransmits the message. Time-out occurs if the slave station does not answer after the master station has performed the above operation three times. (Communication error)

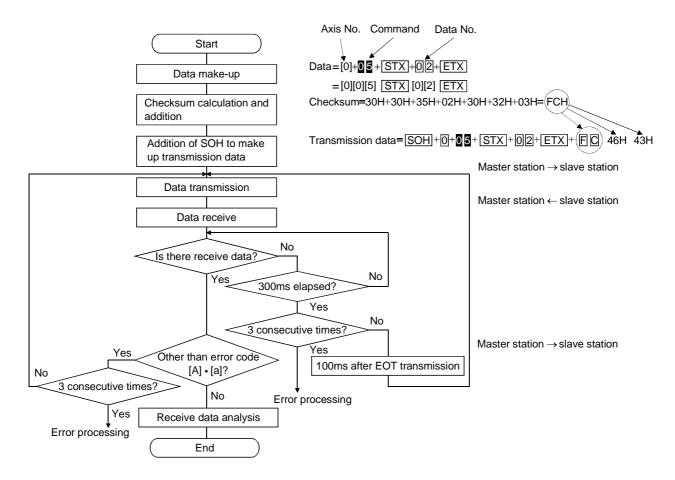
Servo (Slave station)

14.8 Retry operation

When a fault occurs in communication between the master and slave stations, the error code in the response data from the slave station is a negative response code ([B] to [F], [b] to [f]). In this case, the master station retransmits the message which was sent at the occurrence of the fault (Retry operation). A communication error occurs if the above operation is repeated and results in the error three or more consecutive times.

Similarly, when the master station detects a fault (e.g. checksum, parity) in the response data from the slave station, the master station retransmits the message which was sent at the occurrence of the fault. A communication error occurs if the retry operation is performed three times.

14.9 Initialization


After the slave station is switched on, it cannot reply to communication until the internal initialization processing terminates. Hence, at power-on, ordinary communication should be started after:

- (1) 1s or more time has elapsed after the slave station is switched on; and
- (2) Making sure that normal communication can be made by reading the parameter or other data which does not pose any safety problems.

14.10 Communication procedure example

The following example reads the set value of parameter No.2 "function selection 1" from the servo amplifier of station 0:

Data item	Value	Description
Station number	0	Servo amplifier station 0
Command	05	Read command
Data No.	02	Parameter No.2

14.11 Command and data No. list

POINT

• If the command/data No. is the same, its data may be different from the interface and drive units and other servo amplifiers.

14.11.1 Read commands

(1) Status display (Command [0][1])

Command	Data No.	Description	Display item	Frame length
[0][1]	[8][0]	Status display data value and	cumulative feedback pulses	12
[0][1]	[8][1]	processing information	servo motor speed	12
[0][1]	[8][2]		droop pulses	12
[0][1]	[8][3]		cumulative command pulses	12
[0][1]	[8][4]		command pulse frequency	12
[0][1]	[8][5]		analog speed command voltage analog speed limit voltage	12
[0][1]	[8][6]		analog torque command voltage analog torque limit voltage	12
[0][1]	[8][7]		regenerative load ratio	12
[0][1]	[8][8]		effective load ratio	12
[0][1]	[8][9]		peak load ratio	12
[0][1]	[8][A]		Instantaneous torque	12
[0][1]	[8][B]		within one-revolution position	12
[0][1]	[8][C]		ABS counter	12
[0][1]	[8][D]		load inertia moment ratio	12
[0][1]	[8][E]		Bus voltage	12

(2) Parameter (Command [0][5])

Command	Data No.	Description	Frame length
[0][5]	[0][0] to	Current value of each parameter	8
	[5][4]	The decimal equivalent of the data No. value (hexadecimal) corresponds	
		to the parameter number.	

(3) External I/O signals (Command [1][2])

Command	Data No.	Description	Frame length
[1][2]	[4][0]	External input pin statuses	8
[1][2]	[C][0]	External output pin statuses	8

(4) Alarm history (Command [3][3])

Command	Data No.	Description	Alarm occurrence sequence	Frame length
[3][3]	[1][0]	Alarm number in alarm history	most recent alarm	4
[3][3]	[1][1]		first alarm in past	4
[3][3]	[1][2]		second alarm in past	4
[3][3]	[1][3]		third alarm in past	4
[3][3]	[1][4]		fourth alarm in past	4
[3][3]	[1][5]		fifth alarm in past	4
[3][3]	[2][0]		most recent alarm	8
[3][3]	[2][1]		first alarm in past	8
[3][3]	[2][2]	Alarm occurrence time in alarm	second alarm in past	8
[3][3]	[2][3]	history	third alarm in past	8
[3][3]	[2][4]		fourth alarm in past	8
[3][3]	[2][5]		fifth alarm in past	8

(5) Current alarm (Command [0][2] • [3][5])

Command	Data No.	Description	Frame length
[0][2]	[0][0]	Current alarm number	4

Command	Data No.	Description	Display item	Frame length
[3][5]	[8][0]	Status display data value and	cumulative feedback pulses	12
[3][5]	[8][1]	processing information at alarm	servo motor speed	12
[3][5]	[8][2]	occurrence	droop pulses	12
[3][5]	[8][3]		cumulative command pulses	12
[3][5]	[8][4]		command pulse frequency	12
[3][5]	[8][5]		analog speed command voltage analog speed limit voltage	12
[3][5]	[8][6]		analog torque command voltage analog torque limit voltage	12
[3][5]	[8][7]		regenerative load ratio	12
[3][5]	[8][8]		effective load ratio	12
[3][5]	[8][9]		peak load ratio	12
[3][5]	[8][A]		Instantaneous torque	12
[3][5]	[8][B]		within one-revolution position	12
[3][5]	[8][C]		ABS counter	12
[3][5]	[8][D]		load inertia moment ratio	12
[3][5]	[8][E]		Bus voltage	12

(6) Others

Command	Data No.	Description	Frame length
[0][2]	[9][0]	Servo motor end pulse unit absolute position	8
[0][2]	[9][1]	Command unit absolute position	8
[0][2]	[7][0]	Software version	16

14.11.2 Write commands

(1) Status display (Command [8][1])

Command	Data No.	Description	Setting range	Frame length
[8][1]	[0][0]	Status display data clear	1EA5	4

(2) Parameter (Command [8][4])

Command	Data No.	Description	Setting range	Frame length
[8][4]	[0][0] to	Each parameter write	Depends on the	8
	[5][4]	The decimal equivalent of the data No. value	parameter.	
		(hexadecimal) corresponds to the parameter		
		number.		

(3) Alarm history (Command [8][2])

Command	Data No.	Description	Setting range	Frame length
[8][2]	[2][0]	Alarm history clear	1EA5	4

(4) Current alarm (Command [8][2])

Command	Data No.	Description	Setting range	Frame length
[8][2]	[0][0]	Alarm reset	1EA5	4

(5) Operation mode selection (Command [8][B])

Command	Data No.	Description	Setting range	Frame length
[8][B]	[0][0]	Operation mode changing	0000 to 0004	4
		0000: Exit from test operation mode		
		0001: Jog operation		
		0002: Positioning operation		
		0003: Motor-less operation		
		0004: Output signal (DO) forced output		

(6) External input signal disable (Command [9][0])

Command	Data No.	Description	Setting range	Frame length
[9][0]	[0][0]	Turns off the external input signals (DI), external analog input signals and pulse train inputs with the exception of EMG, LSP and LSN, independently of the external ON/OFF statuses.	1EA5	4
[9][0]	[0][3]	Changes the external output signals (DO) into the value of command [8][B] or command [A][0] + data No. [0][1].	1EA5	4
[9][0]	[1][0]	Enables the disabled external input signals (DI), external analog input signals and pulse train inputs with the exception of EMG, LSP and LSN.	1EA5	4
[9][0]	[1][3]	Enables the disabled external output signals (DO).	1EA5	4

(7) Data for test operation mode (Command [9][2] • [A][0])

Command	Data No.	Description	Setting range	Frame length
[9][2]	[0][0]	Input signal for test operation	Refer to section	8
			14.12.6	
[9][2]	[A][0]	Forced output from signal pin	Refer to section	8
			14.12.8	

Command	Data No.	Description	Setting range	Frame length
[A][0]	[1][0]	Writes the speed of the test operation mode (jog operation,	0000 to 7FFF	4
		positioning operation).		
[A][0]	[1][1]	Writes the acceleration/deceleration time constant of the test	00000000 to	8
		operation mode (jog operation, positioning operation).	7FFFFFFF	
[A][0]	[1][2]	Clears the acceleration/deceleration time constant of the test	1EA5	4
		operation mode (jog operation, positioning operation).		
[A][0]	[1][3]	Writes the moving distance (in pulses) of the test operation	80000000 to	8
		mode (jog operation, positioning operation).	7FFFFFFF	
[A][0]	[1][5]	Temporary stop command of the test operation mode (jog	1EA5	4
		operation, positioning operation)		

14.12 Detailed explanations of commands

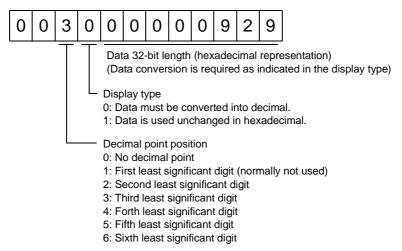
14.12.1 Data processing

When the master station transmits a command + data No. or a command + data No. + data to a slave station, the servo amplifier returns a reply or data according to the purpose.

When numerical values are represented in these send data and receive data, they are represented in decimal, hexadecimal, etc.

Therefore, data must be processed according to the application.

Since whether data must be processed or not and how to process data depend on the monitoring, parameters, etc., follow the detailed explanation of the corresponding command.

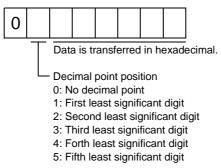

The following methods are how to process send and receive data when reading and writing data.

(1) Processing the read data

When the display type is 0, the eight-character data is converted from hexadecimal to decimal and a decimal point is placed according to the decimal point position information.

When the display type is 1, the eight-character data is used unchanged.

The following example indicates how to process the receive data "003000000929" given to show. The receive data is as follows.


Since the display type is "0" in this case, the hexadecimal data is converted into decimal. $00000929H \rightarrow 2345$

As the decimal point position is "3", a decimal point is placed in the third least significant digit. Hence, "23.45" is displayed.

(2) Writing the processed data

When the data to be written is handled as decimal, the decimal point position must be specified. If it is not specified, the data cannot be written. When the data is handled as hexadecimal, specify "0" as the decimal point position.

The data to be sent is the following value.

By way of example, here is described how to process the set data when a value of "15.5" is sent.

Since the decimal point position is the second digit, the decimal point position data is "2".

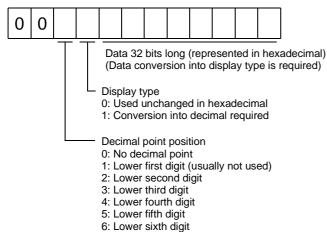
As the data to be sent is hexadecimal, the decimal data is converted into hexadecimal.

155→9B

Hence, "0200009B" is transmitted.

14.12.2 Status display

(1) Status display data read


When the master station transmits the data No. (refer to the following table for assignment) to the slave station, the slave station sends back the data value and data processing information.

1) Transmission

Transmit command [0][1] and the data No. corresponding to the status display item to be read. Refer to Section 14.11.1.

2) Reply

The slave station sends back the status display data requested.

(2) Status display data clear

The cumulative feedback pulse data of the status display is cleared. Send this command immediately after reading the status display item. The data of the status display item transmitted is cleared to zero.

Command	Data No.	Data
[8][1]	[0][0]	1EA5

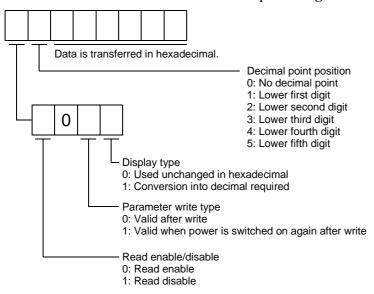
For example, after sending command [0][1] and data No. [8][0] and receiving the status display data, send command [8][1], data No. [0][0] and data [1EA5] to clear the cumulative feedback pulse value to zero.

14.12.3 Parameter

(1) Parameter read

Read the parameter setting.

1) Transmission


Transmit command [0][5] and the data No. corresponding to the parameter No.

The data No. is expressed in hexadecimal equivalent of the data No. value corresponds to the parameter number.

Command	Data No.
[0][5]	[0][0] to
	[5][4]

2) Reply

The slave station sends back the data and processing information of the requested parameter No.

Enable/disable information changes according to the setting of parameter No.19 "parameter write inhibit". When the enable/disable setting is read disable, ignore the parameter data part and process it as unreadable.

(2) Parameter write

POINT

• The number of write times to the EEP-ROM is limited to 100,000.

Write the parameter setting.

Write the value within the setting range. Refer to Section 5.1 for the setting range.

Transmit command [8][4], the data No., and the set data.

The data No. is expressed in hexadecimal. The decimal equivalent of the data No. value corresponds to the parameter number.

When the data to be written is handled as decimal, the decimal point position must be specified. If it is not specified, data cannot be written. When the data is handled as hexadecimal, specify 0 as the decimal point position.

Write the data after making sure that it is within the upper/lower limit value range given in Section 5.1.2. Read the parameter data to be written, confirm the decimal point position, and create transmission data to prevent error occurrence. On completion of write, read the same parameter data to verify that data has been written correctly.

Command	Data No.	Set data
[8][4]	[0][0] to	See below.
	[5][4]	

Data is transferred in hexadecimal.

Decimal point position

- 0: No decimal point
- 1: Lower first digit
- 2: Lower second digit
- 3: Lower third digit
- 4: Lower forth digit
- 5: Lower fifth digit

Write mode

- 0: Write to EEP-ROM
- 3: Write to RAM

When the parameter data is changed frequently through communication, set "3" to the write mode to change only the RAM data in the servo amplifier.

When changing data frequently (once or more within one hour),

do not write it to the EEP-ROM.

14.12.4 External I/O pin statuses (DIO diagnosis)

(1) External input pin status read

Read the ON/OFF statuses of the external input pins.

(a) Transmission

Transmit command [1][2] and data No. [4][0].

Command	Data No.	
[1][2]	[4][0]	

(b) Reply

The ON/OFF statuses of the input pins are sent back.

Command of each bit is transmitted to the master station as hexadecimal data.

bit	External input pin
0	CN1B-16
1	CN1B-17
2	CN1B-15
3	CN1B-5
4	CN1B-14
5	CN1A-8
6	CN1B-7
7	CN1B-8

bit	External input pin
8	CN1B-9
9	
10	
11	
12	
13	
14	
15	

bit	External input pin
16	
17	
18	
19	
20	
21	
22	
23	

bit	External input pin
24	
25	
26	
27	
28	
29	
30	
31	

(2) External output pin status read

Read the ON/OFF statuses of the external output pins.

(a) Transmission

Transmit command [1][2] and data No. [C][0].

Command	Data No.
[1][2]	[C][0]

(b) Reply

The slave station sends back the ON/OFF statuses of the output pins.

Command of each bit is transmitted to the master station as hexadecimal data.

bit	External output pin
0	CN1A-19
1	CN1A-18
2	CN1B-19
3	CN1B-6
4	CN1B-4
5	CN1B-18
6	CN1A-14
7	

bit	External output pin
8	
9	
10	
11	
12	
13	
14	
15	

bit	External output pin
16	
17	
18	
19	
20	
21	
22	
23	

bit	External output pin
24	
25	
26	
27	
28	
29	
30	
31	

14.12.5 Disable/enable of external I/O signals (DIO)

Inputs can be disabled independently of the external I/O signal ON/OFF. When inputs are disabled, the input signals are recognized as follows. Among the external input signals, EMG, LSP and LSN cannot be disabled.

Signal	Status
External input signals (DI)	OFF
External analog input signals	0V
Pulse train inputs	None

(1) Disabling/enabling the external input signals (DI), external analog input signals and pulse train inputs with the exception of EMG, LSP and LSN.

Transmit the following communication commands:

(a) Disable

Command	Data No.	Data
[9][0]	[0][0]	1EA5

(b) Enable

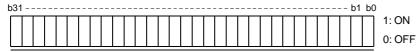
Command	Data No.	Data
[9][0]	[1][0]	1EA5

(2) Disabling/enabling the external output signals (DO)

Transmit the following communication commands:

(a) Disable

Command	Data No.	Data
[9][0]	[0][3]	1EA5


(b) Enable

Command	Data No.	Data
[9][0]	[1][3]	1EA5

14.12.6 External input signal ON/OFF (test operation)

Each input signal can be turned on/off for test operation. Turn off the external input signals. Send command [9] [2], data No. [0] [0] and data.

Command	Data No.	Set data
[9][2]	[0][0]	See below

Command of each bit is transmitted to the slave station as hexadecimal data.

bit	Signal abbreviation
0	SON
1	LSP
2	LSN
3	TL
4	
5	PC
6	RES
7	CR

bit	Signal abbreviation
8	
9	
10	
11	ST1
12	ST2
13	
14	
15	

bi	it	Signal abbreviation
10	6	
1	7	
18	8	
19	9	
20	0	
2	1	
2	2	
23	3	

bit	Signal abbreviation
24	
25	
26	
27	
28	
29	
30	
31	

14.12.7 Test operation mode

(1) Instructions for test operation mode

The test operation mode must be executed in the following procedure. If communication is interrupted for longer than 0.5s during test operation, the servo amplifier causes the motor to be decelerated to a stop and servo-locked. To prevent this, continue communication without a break, e.g. monitor the status display.

(a) Execution of test operation

- 1) Turn off all external input signals.
- 2) Disable the external input signals.

Command	Data No.	Data
[9][0]	[0][0]	1EA5

3) Choose the test operation mode.

Command	Data No.	Transmission data	Selection of test operation mode
[8][B]	[0][0]	0000	Test operation mode cancel
[8][B]	[0][0]	0001	Jog operation
[8][B]	[0][0]	0002	Positioning operation
[8][B]	[0][0]	0003	Motor-less operation
[8][B]	[0][0]	0004	DO forced output

- 4) Set the data needed for test operation.
- 5) Start.
- 6) Continue communication using the status display or other command.

(b) Termination of test operation

To terminate the test operation mode, complete the corresponding operation and:

1) Clear the test operation acceleration/deceleration time constant.

Command	Data No.	Data
[A][0]	[1][2]	1EA5

2) Cancel the test operation mode.

Command	Data No.	Data
[8][B]	[0][0]	0000

3) Enable the disabled external input signals.

Command	Data No.	Data
[9][0]	[1][0]	1EA5

(2) Jog operation

Transmit the following communication commands:

(a) Setting of jog operation data

Item	Command	Data No.	Data
Speed	[A][0]	[1][0]	Write the speed [r/min] in hexadecimal.
Acceleration/decelerati	[A][0]	[1][1]	Write the acceleration/deceleration time constant
on time constant			[ms] in hexadecimal.

(b) Start

Turn on the input devices SON · LSP · LSN by using command [9][2] + data No. [0][0].

Item	Command	Data No.	Data
Forward rotation start	[9][2]	[0][0]	00000807: Turns on SON • LSP • LSN • ST1.
Reverse rotation start	[9][2]	[0][0]	00001007: Turns on SON · LSP · LSN · ST2.
Stop	[9][2]	[0][0]	00000007: Turns on SON · LSP and LSN.

(3) Positioning operation

Transmit the following communication commands:

(a) Setting of positioning operation data

Item	Command	Data No.	Data
Speed	[A][0]	[1][0]	Write the speed [r/min] in hexadecimal.
Acceleration/decelerat	[A][0]	[1][1]	Write the acceleration/deceleration time constant
ion time constant			[ms] in hexadecimal.
Moving distance	[A][0]	[1][3]	Write the moving distance [pulse] in
_			hexadecimal.

(b) Input of servo-on • stroke end

Turn on the input devices SON • LSP and LSN by using command [9][2] + data No. [0][0].

Item	Command	Data No.	Data
Servo-on	[9][2]	[0][0]	00000001: Turns on SON.
Servo OFF	[9][2]	[0][0]	00000006: Turns off SON and turns on LSP
Stroke end ON			LSN.
Servo-on	[9][2]	[0][0]	00000007: Turns on SON • LSP • LSN.
Stroke end ON	[-][~]	[-][0]	201

(c) Start of positioning operation

Transmit the speed and acceleration/deceleration time constant, turn on the servo-on (SON) and forward/reverse rotation stroke end (LSP • LSN), and then send the moving distance to start positioning operation. After that, positioning operation will start every time the moving distance is transmitted. To start opposite rotation, send the moving distance of a negative value.

When the servo-on (SON) and forward/reverse rotation stroke end (LSP · LSN) are off, the transmission of the moving distance is invalid. Therefore, positioning operation will not start if the servo-on (SON) and forward/reverse rotation stroke end (LSP · LSN) are turned on after the setting of the moving distance.

(d) Temporary stop

A temporary stop can be made during positioning operation.

Command	Data No.	Data
[A][0]	[1][5]	1EA5

Retransmit the same communication commands as at the start time to resume operation.

To stop positioning operation after a temporary stop, retransmit the temporary stop communication command. The remaining moving distance is then cleared.

14.12.8 Output signal pin ON/OFF output signal (DO) forced output

In the test operation mode, the output signal pins can be turned on/off independently of the servo status. Using command [9][0], disable the output signals in advance.

(1) Choosing DO forced output in test operation mode

Transmit command [8][B] + data No. [0][0] + data "0004" to choose DO forced output.

- Selection of test operation mode

4: DO forced output (output signal forced output)

(2) External output signal ON/OFF

Transmit the following communication commands:

Command	Data No.	Setting data
[9][2]	[A][0]	See below.

Command of each bit is sent to the slave station in hexadecimal.

bit	External output pin
0	CN1A-19
1	CN1A-18
2	CN1B-19
3	CN1B-6
4	CN1B-4
5	CN1B-18
6	CN1A-14
7	

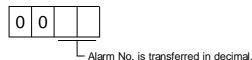
bit	External output pin
8	
9	
10	
11	
12	
13	
14	
15	

bit	External output pin
16	
17	
18	
19	
20	
21	
22	
23	

bit	External output pin
24	
25	
26	
27	
28	
29	
30	
31	

14.12.9 Alarm history

(1) Alarm No. read


Read the alarm No. which occurred in the past. The alarm numbers and occurrence times of No. 0 (last alarm) to No. 5 (sixth alarm in the past) are read.

(a) Transmission

Send command [3][3] and data No. [1][0] to [1][5]. Refer to Section 14.11.1.

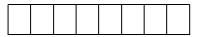
(b) Reply

The alarm No. corresponding to the data No. is provided.

For example, "0032" means AL.32 and "00FF" means AL._ (no alarm).

(2) Alarm occurrence time read

Read the occurrence time of alarm which occurred in the past.


The alarm occurrence time corresponding to the data No. is provided in terms of the total time beginning with operation start, with the minute unit omitted.

(a) Transmission

Send command [3][3] and data No. [2][0] to [2][5].

Refer to Section 14.11.1.

(b) Reply

The alarm occurrence time is transferred in decimal.
 Hexadecimal must be converted into decimal.

For example, data "01F5" means that the alarm occurred in 501 hours after start of operation.

(3) Alarm history clear

Erase the alarm history.

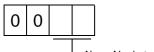
Send command [8][2] and data No. [2][0].

Command	Data No.	Data
[8][2]	[2][0]	1EA5

14.12.10 Current alarm

(1) Current alarm read

Read the alarm No. which is occurring currently.


(a) Transmission

Send command [0][2] and data No. [0][0].

Command	Data No.
[0][2]	[0][0]

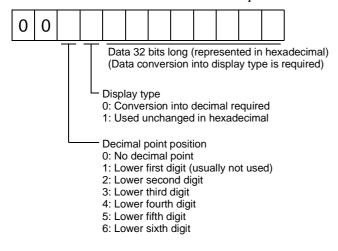
(b) Reply

The slave station sends back the alarm currently occurring.

- Alarm No. is transferred in decimal.

For example, "0032" means AL.32 and "00FF" means AL._ (no alarm).

(2) Read of the status display at alarm occurrence


Read the status display data at alarm occurrence. When the data No. corresponding to the status display item is transmitted, the data value and data processing information are sent back.

(a) Transmission

Send command [3][5] and any of data No. [8][0] to [8][E] corresponding to the status display item to be read. Refer to Section 14.11.1.

(b) Reply

The slave station sends back the requested status display data at alarm occurrence.

(3) Current alarm clear

As by the entry of the reset (RES), reset the servo amplifier alarm to make the servo amplifier ready to operate. After removing the cause of the alarm, reset the alarm with no command entered.

Command	Data No.	Data
[8][2]	[0][0]	1EA5

14.12.11 Other commands

(1) Servo motor end pulse unit absolute position

Read the absolute position in the servo motor end pulse unit.

Note that overflow will occur in the position of 16384 or more revolutions from the home position.


(a) Transmission

Send command [0][2] and data No. [9][0].

Command	Data No.
[0][2]	[9][0]

(b) Reply

The slave station sends back the requested servo motor end pulses.

Absolute value is sent back in hexadecimal in the servo motor end pulse unit. (Must be converted into decimal)

For example, data "000186A0" is 100000 [pulse] in the motor end pulse unit.

(2) Command unit absolute position

Read the absolute position in the command unit.

(a) Transmission

Send command [0][2] and data No. [9][1].

Command	Data No.
[0][2]	[9][1]

(b) Reply

The slave station sends back the requested command pulses.

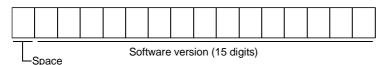
Absolute value is sent back in hexadecimal in the command unit.

(Must be converted into decimal)

For example, data "000186A0" is 100000 [pulse] in the command unit.

(3) Software version

Reads the software version of the servo amplifier.


(a) Transmission

Send command [0][2] and data No.[7][0].

Command	Data No.
[0][2]	[7][0]

(b) Reply

The slave station returns the software version requested.

MEMO		
		

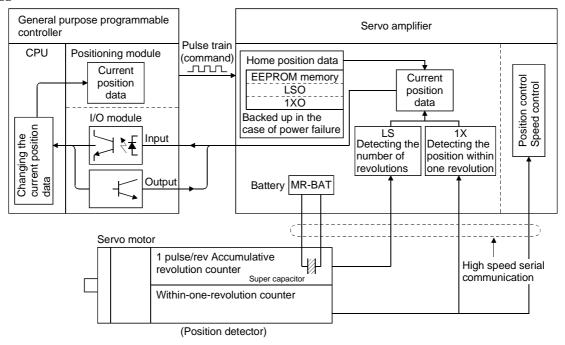
15. ABSOLUTE POSITION DETECTION SYSTEM

ACAUTION

• If an absolute position erase alarm (AL.25) or an absolute position counter marning (AL.E3) has occurred, always perform home position setting again. Not doing so can cause runaway.

POINT

When configuring an absolute position detection system using the QD75P/D PLC, refer to the Type QD75P/QD75D Positioning Module User's Manual QD75P1/QD75P2/QD75P4, QD75D1/QD75D2/QD75D4 (SH (NA) 080058).


15.1 Outline

15.1.1 Features

For normal operation, as shown below, the encoder consists of a detector designed to detect a position within one revolution and a cumulative revolution counter designed to detect the number of revolutions. The absolute position detection system always detects the absolute position of the machine and keeps it battery-backed, independently of whether the general-purpose programming controller power is on or off. Therefore, once the home position is defined at the time of machine installation, home position return is not needed when power is switched on thereafter.

If a power failure or a fault occurs, restoration is easy.

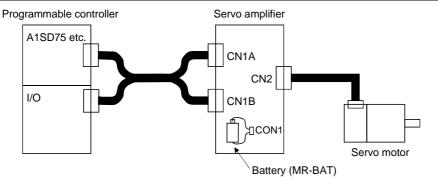
Also, the absolute position data, which is battery-backed by the super capacitor in the encoder, can be retained within the specified period (cumulative revolution counter value retaining time) if the cable is unplugged or broken.

15.1.2 Restrictions

The absolute position detection system cannot be configured under the following conditions. Test operation cannot be performed in the absolute position detection system, either. To perform test operation, choose incremental in parameter No.1.

- (1) Speed control mode, torque control mode.
- (2) Control switch-over mode (position/speed, speed/torque, torque/position).
- (3) Stroke-less coordinate system, e.g. rotary shaft, infinitely long positioning.
- (4) Changing of electronic gear after home position setting.
- (5) Use of alarm code output.

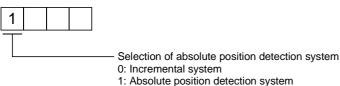
15.2 Specifications


(1) Specification list

Item	Description	
System	Electronic battery backup system	
Dottom	1 piece of lithium battery (primary battery, nominal + 3.6V)	
Battery	Type: MR-BAT or A6BAT	
Maximum revolution range	Home position \pm 32767 rev.	
(Note 1) Maximum speed at power failure	500r/min	
(Note 2) Battery backup time	Approx. 10,000 hours (battery life with power off)	
(Note 3) Data holding time during battery replacement	2 hours at delivery, 1 hour in 5 years after delivery	
Battery storage period	5 years from date of manufacture	

- Note 1. Maximum speed available when the shaft is rotated by external force at the time of power failure or the like.
 - 2. Time to hold data by a battery with power off. It is recommended to replace the battery in three years independently of whether power is kept on or off.
 - 3. Period during which data can be held by the super capacitor in the encoder after power-off, with the battery voltage low or the battery removed, or during which data can be held with the encoder cable disconnected.
 Battery replacement should be finished within this period.

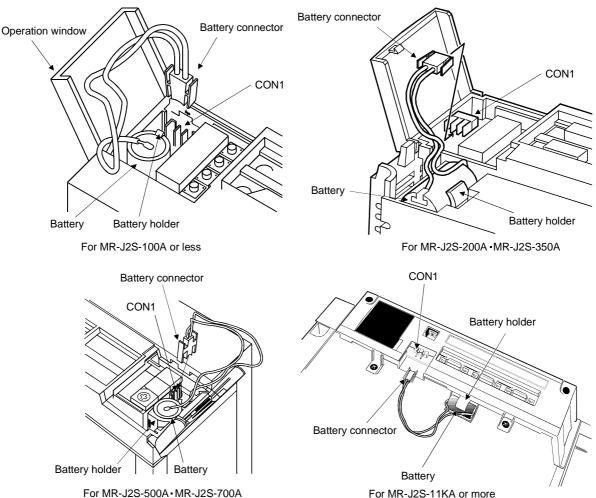
(2) Configuration


Positioning module	I/O module	
A1SD71S2 • A1SD71S7	AX40 • 41 • 42	
A1SD75□	AY40 - 41 - 42	
FX-1PG • FX-1GM • FX-10GM	FX2-32MT	

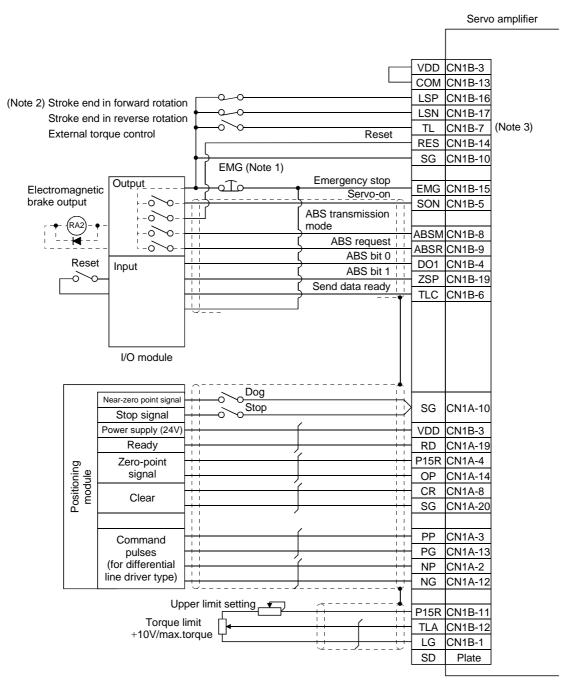
(3) Parameter setting

Set " 1 \square \square " in parameter No.1 to make the absolute position detection system valid.

15.3 Battery installation procedure


№ WARNING

• Before starting battery installation procedure, make sure that the charge lamp is off more than 15 minutes after power-off. Then, confirm that the voltage is safe in the tester or the like. Otherwise, you may get an electric shock.


POINT

The internal circuits of the servo amplifier may be damaged by static electricity. Always take the following precautions:

- Ground human body and work bench.
- Do not touch the conductive areas, such as connector pins and electrical parts, directly by hand.
- (1) Open the operation window. (When the model used is the MR-J2S-200A MR-J2S-350A or more, also remove the front cover.)
- (2) Install the battery in the battery holder.
- (3) Install the battery connector into CON1 until it clicks.

15.4 Standard connection diagram

Note 1. Always install the emergency stop switch.

- 2. For operation, always turn on forward rotation stroke end (LSP)/reverse rotation stroke end (LSN).
- 3. When using the torque limit signal (TL), set "\upper 4" in parameter No.46 to assign TL to pin CN1B-7.

15.5 Signal explanation

When the absolute position data is transferred, the signals of connector CN1 change as described in this section. They return to the previous status on completion of data transfer. The other signals are as described in Section 3.3.2.

For the I/O interfaces (symbols in the I/O Category column in the table), refer to Section 3.6.

Signal name	Code	Pin No.	Function/Application	I/O category	Control mode
ABS transfer mode	ABSM	(Note) CN1B-8	While ABSM is on, the servo amplifier is in the ABS transfer mode, and the functions of ZSP, TLC, and D01 are as indicated in this table.	DI-1	
ABS request	ABSR	(Note) CN1B-9	Turn on ABSR to request the ABS data in the ABS transfer mode.	DI-1	
ABS bit 0	D01	CN1B-4	Indicates the lower bit of the ABS data (2 bits) which is sent from the servo to the programmable controller in the ABS transfer mode. If there is a signal, D01 turns on.	DO-1	Р
ABS bit 1	ZSP	CN1B-19	Indicates the upper bit of the ABS data (2 bits) which is sent from the servo to the programmable controller in the ABS transfer mode. If there is a signal, ZSP turns on.	DO-1	(Position control)
Send data ready	TLC	CN1B-6	Indicates that the data to be sent is being prepared in the ABS transfer mode. At the completion of the ready state, TLC turns on.	DO-1	
Home position setting	CR	CN1A-8	When CR is turned on, the position control counter is cleared and the home position data is stored into the non-volatile memory (backup memory).	DI-1	

Note. When "Used in absolute position detection system" is selected in parameter No. 1, pin CN1B-8 acts as the ABS transfer mode (ABSM) and pin CN1B-9 as the ABS request (ABSR). They do not return to the original signals if data transfer ends.

15.6 Startup procedure

(1) Battery installation.

Refer to Section 15.3 installation of absolute position backup battery.

(2) Parameter setting

Set "1 □□□"in parameter No. 1 of the servo amplifier and switch power off, then on.

(3) Resetting of absolute position erase (AL.25)

After connecting the encoder cable, the absolute position erase (AL.25) occurs at first power-on. Leave the alarm as it is for a few minutes, then switch power off, then on to reset the alarm.

(4) Confirmation of absolute position data transfer

When the servo-on (SON) is turned on, the absolute position data is transferred to the programmable controller. When the ABS data is transferred properly:

- (a) The ready output (RD) turns on.
- (b) The programmable controller/ABS data ready contact (M3 for A1SD71, M99 for 1PG) turns on.
- (c) The MR Configurator (servo configuration software) ABS data display window (refer to Section 15.9) and programmable controller side ABS data registers (D3, D4 for A1SD71, D106, D107 for 1PG) show the same value (at the home position address of 0).
 - If any warning such as ABS time-out warning (AL.E5) or programmable controller side transfer error occurs, refer to Section 15.10 or Chapter 10 and take corrective action.

(5) Home position setting

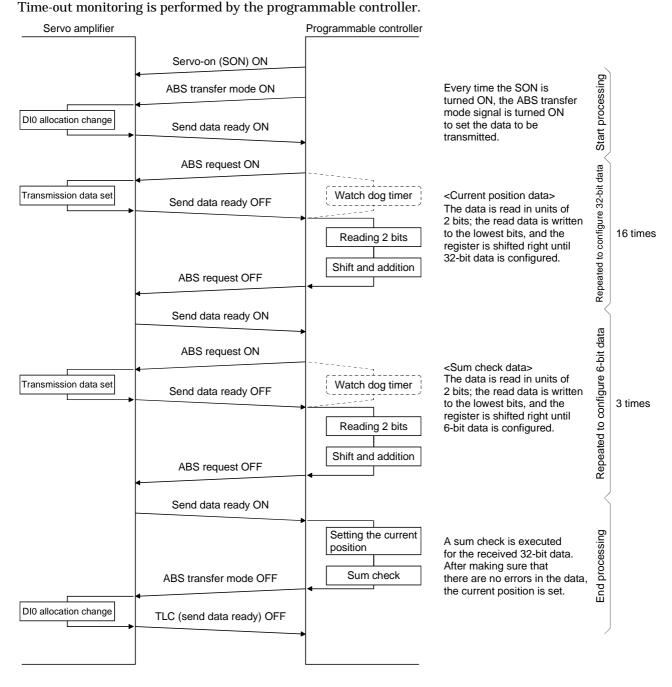
The home position must be set if:

- (a) System setup is performed;
- (b) The servo amplifier has been changed;
- (c) The servo motor has been changed; or
- (d) The absolute position erase (AL.25) occurred.

In the absolute position system, the absolute position coordinates are made up by making home position setting at the time of system setup.

The motor shaft may misoperate if positioning operation is performed without home position setting. Always make home position setting before starting operation.

For the home position setting method and types, refer to Section 15.7.3.

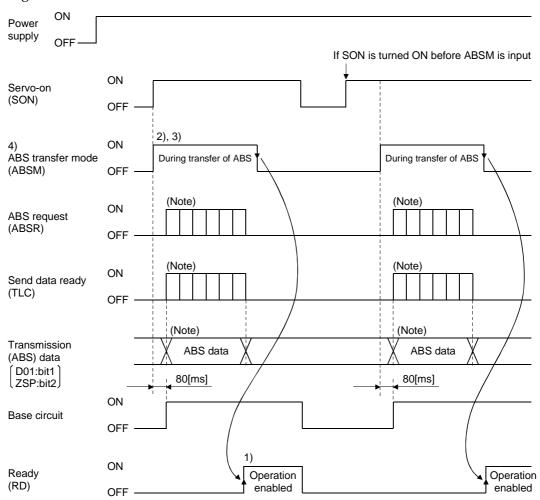

15.7 Absolute position data transfer protocol

POINT

• After switching on the ABS transfer mode (ABSM), turn on the servo-on signal (SON). When the ABS transfer mode is off, turning on the servo-on signal (SON) does not switch on the base circuit.

15.7.1 Data transfer procedure

Each time the servo-on (SON) is turned ON (when the power is switched ON for example), the programmable controller reads the position data (present position) of the servo amplifier.

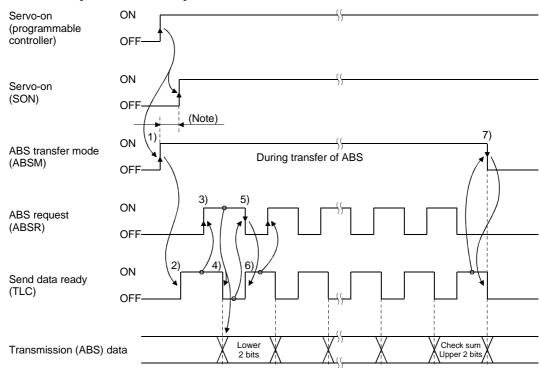


15.7.2 Transfer method

The sequence in which the base circuit is turned ON (servo-on) when it is in the OFF state due to the servo-on (SON) going OFF, an emergency stop (EMG), or alarm (ALM), is explained below. In the absolute position detection system, every time the servo-on (SON) is turned on, the ABS transfer mode (ABSM) should always be turned on to read the current position in the servo amplifier to the controller. The servo amplifier transmits to the controller the current position latched when the ABS transfer mode (ABSM) switches from OFF to ON. At the same time, this data is set as a position command value inside the servo amplifier. Unless the ABS transfer mode (ABSM) is turned ON, the base circuit cannot be turned ON.

(1) At power-on

(a) Timing chart


Note. For details, refer to (1) (b) in this section.

- 1) The ready (RD) is turned ON when the ABS transfer mode (ABSM) is turned OFF after transmission of the ABS data.
 - While the ready (RD) is ON, the ABS transfer mode (ABSM) input is not accepted.
- 2) Even if the servo-on (SON) is turned ON before the ABS transfer mode (ABSM) is turned ON, the base circuit is not turned ON until the ABS transfer mode (ABSM) is turned ON. If a servo alarm has occurred, the ABS transfer mode (ABSM) is not received. The ABS transfer mode (ABSM) allows data transmission even while a servo warning is occurring.
- 3) If the ABS transfer mode (ABSM) is turned OFF during the ABS transfer mode, the ABS transfer mode is interrupted and the ABS time-out warning (AL.E5) occurs.
- 4) The functions of output signals such as ZSP, TLC, D01, and INP change depending on the ON/OFF state of the ABS transfer mode (ABSM).
 Note that if the ABS transfer mode (ABSM) is turned ON for a purpose other than ABS data

transmission, the output signals will be assigned the functions of ABS data transmission.

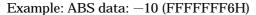
Symbol Pin No.		Output signal		
		ABS transfer mode (ABSM): OFF	ABS transfer mode (ABSM): ON	
(Note) D01	CN1B-4	Positioning completion	ABS data bit 0	
ZSP	CN1B-19	Zero speed	ABS data bit 1	
TLC	CN1B-6	During torque limit control	Send data ready	
(Note) INP	CN1A-18	Positioning completion	ABS data bit 0	

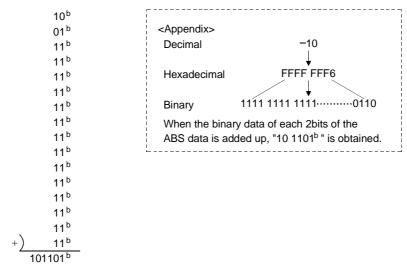
Note. CN1B-4 and CN1A-18 output the same signals. (To enter the positioning completion signal into INPS of the A1SD75, connect CN1A-18.)

(b) Detailed description of absolute position data transfer

Note. If the servo-on (SON) is not turned ON within 1 second after the ABS transfer mode (ABSM) is turned ON, an SON time-out warning (AL.EA) occurs. This warning, however, does not interrupt data transmission. It is automatically cleared when the servo-on (SON) is turned ON.

- 1) The programmable controller turns ON the ABS transfer mode (ABSM) and servo-on (SON) at the leading edge of the internal servo-on (SON).
- 2) In response to the ABS transfer mode (ABSM), the servo detects and calculates the absolute position and turns ON the send data ready (TLC) to notify the programmable controller that the servo is ready for data transmission.
- 3) After acknowledging that the ready to send (TLC) has been turned ON, the programmable controller turns ABS request (ABSR) ON.
- 4) In response to ABS request (ABSR), the servo outputs the lower 2 bits of the ABS data and the ready to send (TLC) in the OFF state.
- 5) After acknowledging that the ready to send (TLC) has been turned OFF, which implies that 2 bits of the ABS data have been transmitted, the programmable controller reads the lower 2 bits of the ABS data and then turns OFF the ABS request (ABSR).
- 6) The servo turns ON the ready to send (TLC) so that it can respond to the next request. Steps 3) to 6) are repeated until 32-bit data and the 6-bit check sum have been transmitted.
- 7) After receiving of the check sum, the programmable controller turns the ABS transfer mode (ABSM) OFF.
 - If the ABS transfer mode (ABSM) is turned OFF during data transmission, the ABS transfer mode (ABSM) is interrupted.


(c) Checksum

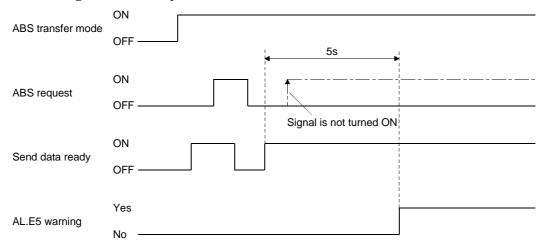

The check sum is the code which is used by the programmable controller to check for errors in the received ABS data. The 6-bit check sum is transmitted following the 32-bit ABS data. At the programmable controller, calculate the sum of the received ABS data using the ladder

The method of calculating the check sum is shown. Every time the programmable controller receives 2 bits of ABS data, it adds the data to obtain the sum of the received data. The check sum is 6-bit data.

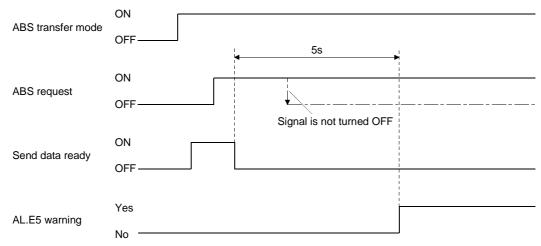
Negative data is available for the FX-1PG and unavailable for the A1SD71.

program and compare it with the check sum code sent from the servo.

Therefore, the check sum of "-10" (ABS data) is " $2D^{\rm b}$ "

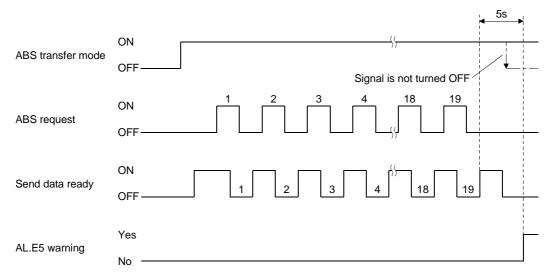

(2) Transmission error

(a) Time-out warning(AL.E5)


In the ABS transfer mode, the time-out processing shown below is executed at the servo. If a time-out error occurs, an ABS time-out warning (AL.E5) is output.

The ABS time-out warning (AL.E5) is cleared when the ABS transfer mode (ABSM) changes from OFF to ON.

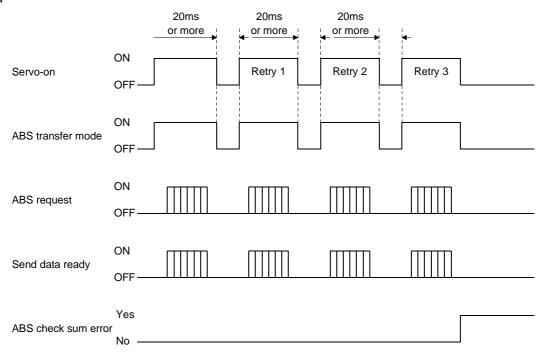
1) ABS request OFF-time time-out check (applied to 32-bit ABS data in 2-bit units + check sum) If the ABS request signal is not turned ON by the programmable controller within 5s after the send data ready (TLC) is turned ON, this is regarded as a transmission error and the ABS time-out warning (AL.E5) is output.



2) ABS request ON-time time-out check (applied to 32-bit ABS data in 2-bit units + check sum) If the ABS request signal is not turned OFF by the programmable controller within 5s after the send data ready (TLC) is turned OFF, this is regarded as the transmission error and the ABS time-out warning (AL.E5) is output.

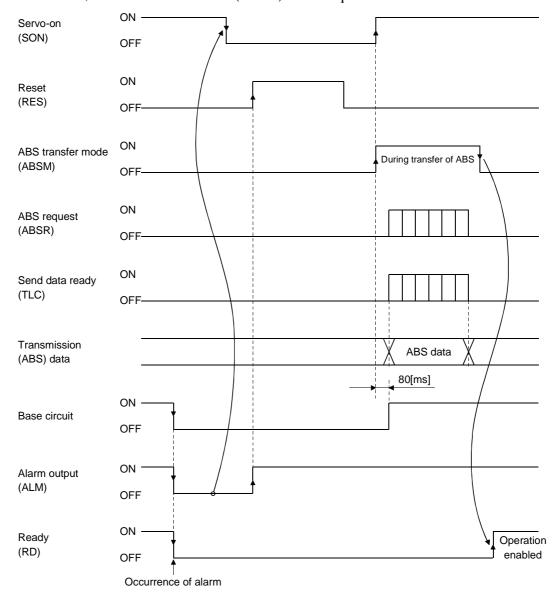
3) ABS transfer mode finish-time time-out check

If the ABS transfer mode (ABSR) is not turned OFF within 5s after the last ready to send signal (19th signal for ABS data transmission) is turned ON, it is regarded as the transmission error and the ABS time-out warning (AL.E5) is output.


(b) Check sum error

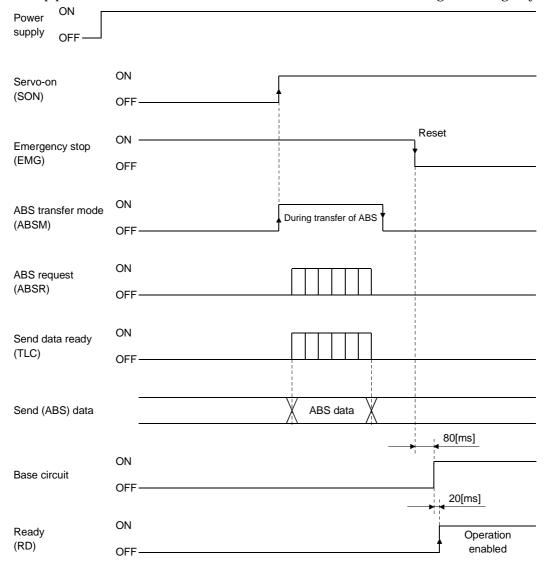
If the check sum error occurs, the programmable controller should retry transmission of the ABS data.

Using the ladder check program, turn OFF the ABS transfer mode (ABSM) and servo-on (SON) once. Turn them ON again after an OFF time of longer than 20 ms.

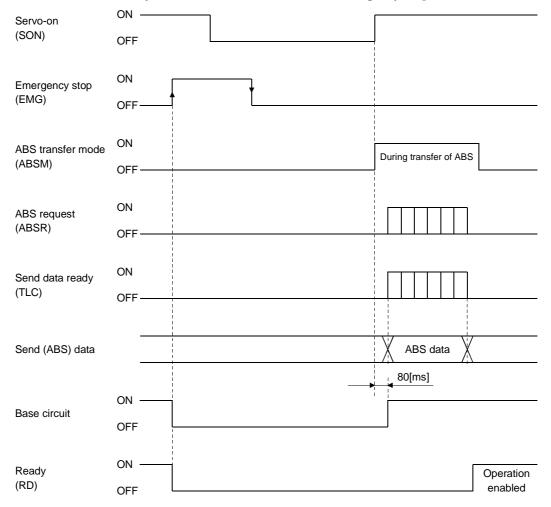

If the ABS data transmission fails to end normally even after retry, regard this situation as an ABS check sum error and execute error processing.

The start command should be interlocked with the ABS data ready signal to disable positioning operation when an check sum error occurs.

(3) At the time of alarm reset


If an alarm occurs, turn OFF the servo-on (SON) by detecting the alarm output (ALM). If an alarm has occurred, the ABS transfer mode (ABSM) cannot be accepted. In the reset state, the ABS transfer mode (ABSM) can be input.

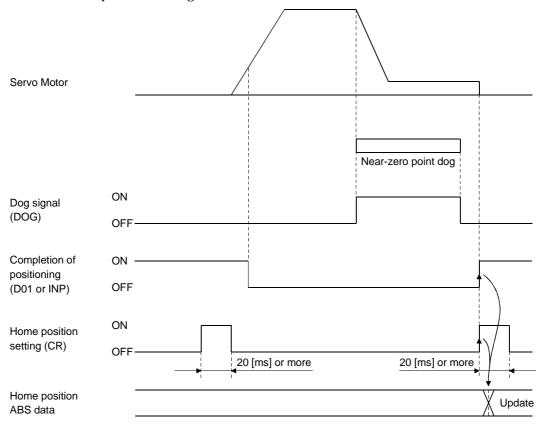
(4) At the time of emergency stop reset


(a) If the power is switched ON in the emergency stop state

The emergency stop state can be reset while the ABS data is being transferred. If the emergency stop state is reset while the ABS data is transmitted, the base circuit is turned ON 80[ms] after resetting. If the ABS transfer mode (ABSM) is OFF when the base circuit is turned ON, the ready (RD) is turned ON 20[ms] after the turning ON of the base circuit. If the ABS transfer mode (ABSM) is ON when the base circuit is turned ON, it is turned OFF and then the ready (RD) is turned ON. The ABS data can be transmitted after the emergency stop state is reset. The current position in the servo amplifier is updated even during an emergency stop. When servoon (SON) and ABS transfer mode (ABSM) are turned ON during an emergency stop as shown below, the servo amplifier transmits to the controller the current position latched when the ABS transfer mode (ABSM) switches from OFF to ON, and at the same time, the servo amplifier sets this data as a position command value. However, since the base circuit is OFF during an emergency stop, the servo-lock status is not encountered. Therefore, if the servo motor is rotated by external force or the like after the ABS transfer mode (ABSM) is turned ON, this travel is accumulated in the servo amplifier as droop pulses. If the emergency stop is cleared in this status, the base circuit turns ON and the motor returns to the original position rapidly to compensate for the droop pulses. To avoid this status, reread the ABS data before clearing the emergency stop.

(b) If emergency stop is activated during servo-on

The ABS transfer mode (ABSM) is permissible while in the emergency stop state. In this case, the base circuit and the ready (RD) are turned ON after the emergency stop state is reset.

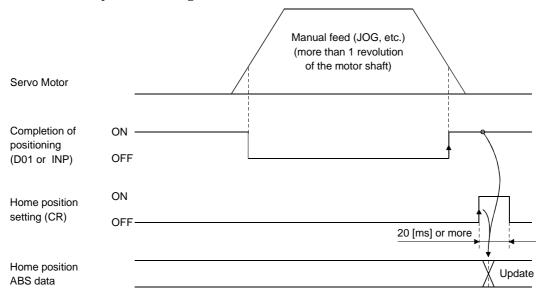


15.7.3 Home position setting

(1) Dog type home position return

Preset a home position return creep speed at which the machine will not be given impact. On detection of a zero pulse, the home position setting (CR) is turned from off to on. At the same time, the servo amplifier clears the droop pulses, comes to a sudden stop, and stores the stop position into the non-volatile memory as the home position ABS data.

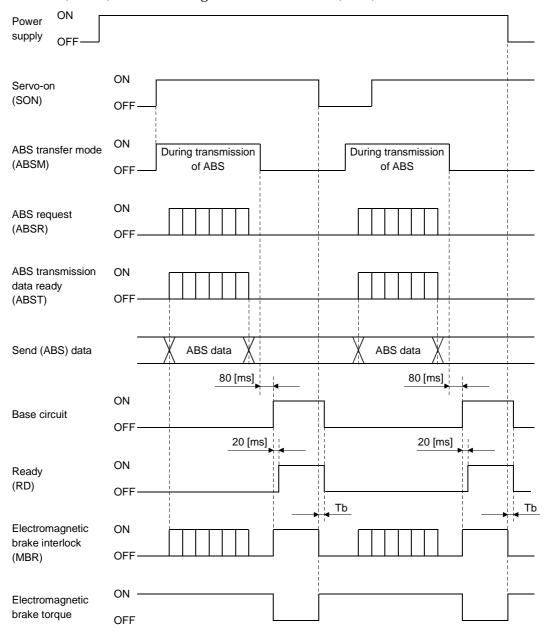
The home position setting (CR) should be turned on after it has been confirmed that the in-position (D01 or INP) is on. If this condition is not satisfied, the home position setting warning (AL.96) will occur, but that warning will be reset automatically by making home position return correctly. The number of home position setting times is limited to 1,000,000 times.


(2) Data set type home position return

POINT

- Never make home position setting during command operation or servo motor rotation. It may cause home position sift.
- It is possible to execute data set type home position return when the servo off.

Move the machine to the position where the home position is to be set by performing manual operation such as jog operation to turn the motor shaft more than one revolution. When the home position setting (CR) is on for longer than 20ms, the stop position is stored into the non-volatile memory as the home position ABS data.


The home position setting (CR) should be turned on after it has been confirmed that the in-position (D01 or INP) is on. If this condition is not satisfied, the home position setting warning (AL.96) will occur, but that warning will be reset automatically by making home position return correctly. The number of home position setting times is limited to 1,000,000 times.

15.7.4 Use of servo motor with electromagnetic brake

The timing charts at power on/off and servo-on (SON) on/off are given below.

Preset " $\square \square \square$ " in parameter No. 1 to make the electromagnetic brake interlock (MBR) usable. When the ABS transfer mode is ON, the electromagnetic brake interlock (MBR) is used as the ABS data bit 1. Hence, make up an external sequence which will cause the electromagnetic brake torque to be generated by the ABS mode (ABSM) and electromagnetic brake interlock (MBR).

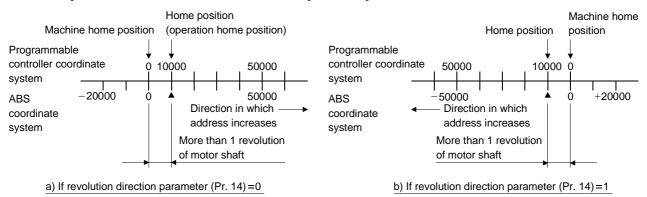
15.7.5 How to process the absolute position data at detection of stroke end

The servo amplifier stops the acceptance of the command pulse when stroke end (LSP \cdot LSN) is detected, clears the droop pulses to 0 at the same time, and stops the servo motor rapidly.

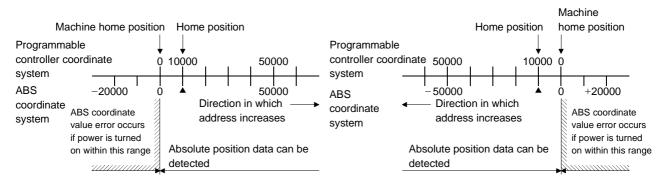
At this time, the programmable controller keeps outputting the command pulse. Since this causes a discrepancy between the absolute position data of the servo amplifier and the programmable controller, a difference will occur between the position data of the servo amplifier and that of the programmable controller.

To prevent this difference in position data from occurring, do as described below. When the servo amplifier has detected the stroke end, perform jog operation or the like to clear the stroke end. After that, switch the servo-on (SON) off once, then on again, or switch the power off once, then on again. This causes the absolute position data of the servo amplifier to be transferred to the programmable controller, restoring the normal data.

15.8 Examples of use


15.8.1 MELSEC-A1S (A1SD71)

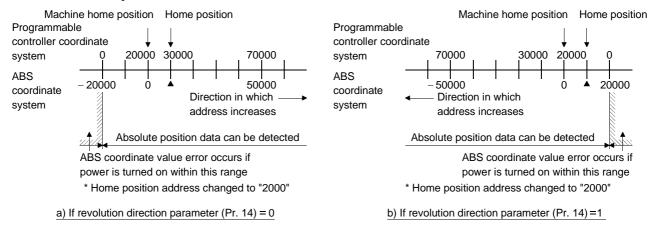
(1) Instructions


The absolute coordinate system (programmable controller coordinate system) of the A1SD71 (AD71) only covers the range in which the address increases (positive coordinate values) on moving away from the machine home position (the position reached in the home position return operation). Therefore, if the motor enters the range where the coordinate value is negative due to the load torque or a fall on a vertical axis when the power is turned ON/OFF at a point near the machine home position, the system fails to detect the absolute position. To prevent this problem, it is necessary to set the home position (operation home position) for positioning in addition to the machine home position.

(a) The home position should be set in the direction in which the position address of the programmable controller coordinate system increases on moving away from machine home position, as illustrated below. Note that the home position for positioning must be more than one revolution of the servo motor shaft from the machine home position.

If the address of the machine home position is changed to any value other than "0", the home position should be set in the direction in which the position address increases on moving away from the machine home position (machine home position after changing the home position address) and at a point removed from the machine home position by more than one revolution of the motor shaft.

(b) In the range where the address decreases on moving away from the machine home position, do not turn the power supply to the programmable controller or the servo amplifier, the servo-on pushbutton switch, or the PC-RESET switch, ON/OFF. If any of these operations are attempted, the ABS coordinate error (Y4B) is output since the absolute position cannot be detected.



a) If revolution direction parameter (Pr. 14)=0

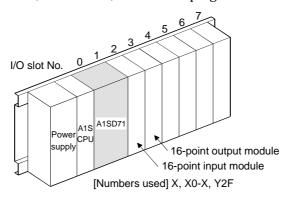
b) If revolution direction parameter (Pr. 14)=1

If the address of the machine home position is changed to any coordinate value other than "0", the programmable controller coordinate system will be as illustrated below.

The power should be turned ON/OFF in the range in which the address increases on moving away from the home position.

(c) In a positioning program, the address of the positioning point should be determined by adding the home position address to the target position address.

Example) After home position return, execute positioning at 1) to 3).

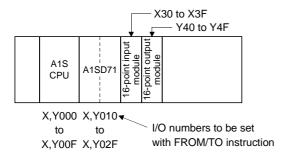

- 1) Positioning at position address 80000 (PC coordinate 140000)
- 2) Positioning at position address 130000 (PC coordinate 190000)
- 3) Positioning at position address 0 (PC coordinate 60000)

(d) Slot arrangement

The sequence programs presented in this section show I/O numbers (X, Y) assuming the arrangement of modules on the main base unit is as illustrated below. A1SD71 is mounted at I/O slots 0 and 1, a 16-point input module at slot 2, and 16-point output module at slot 3. If the actual arrangement of the modules differs from this arrangement, change the X and Y numbers accordingly.

The numbers of the devices (M, D, T, etc.) used in the program can be changed as required.

Example arrangement of modules

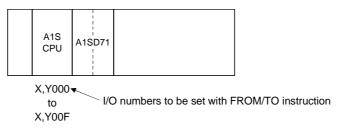

(e) Points

1) The A1SD71 has 48 I/O points and occupies 2 slots. For I/O allocation using the GPP function, follow the instructions given below.

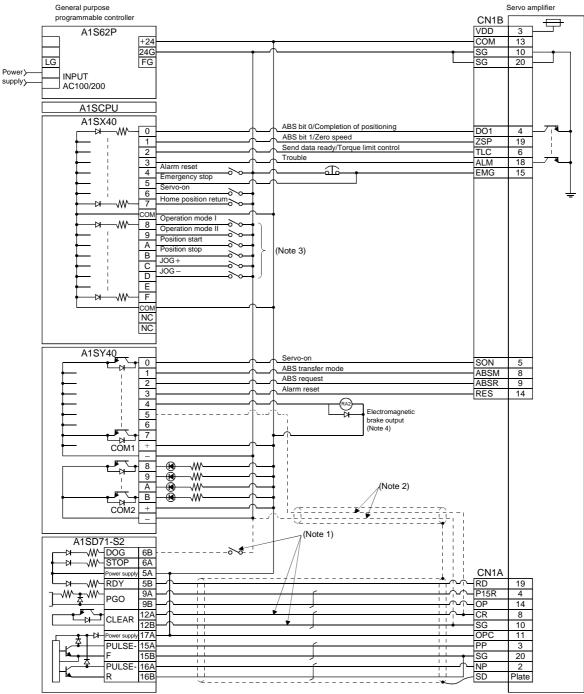
First slot: Vacant slot 16 points

Second slot: Special function module 32 points

2) To execute the FROM/TO instruction for the A1SD71, use the head I/O number of the second slot.



Note: The program example given in (3) in this section is for 1-axis control. Slot allocations are as illustrated to the left. To use the system for 2-axis control, increase the number of I/O points.


Therefore, the I/O number to be set with the FROM/TO instruction is head I/O number allocated to the A1SD71 + 010H.

3) By setting "0 point of vacant slot" for the first slot of the A1SD71 in the "I/O allocation" of the GPP function, the 16 points in the first slot can be saved.

In this case, the I/O number to be set with the FROM/TO instruction is the same number as the head I/O number allocated to the A1SD71.

(2) Connection diagram

Note 1. To be connected for dog type home position setting. The connection in Note 2 is not required.

- 2. To be connected for data set type home position setting. The connection in Note 1 is not required.
- 3. This circuit is for reference only.
- 4. The electromagnetic brake interlock (MBR) output should be controlled by connecting the programmable controller output to a relay.

(3) Sequence program example

(a) Conditions

This sample program is an ABS sequence program example for a single axis (X axis).

To transmit the ABS data using the OFF-to-ON change of the servo-on (SON) as the trigger.

- 1) When the servo-on (SON) and the GND of the power supply are shorted, the ABS data is transmitted when the power to the servo amplifier power is turned ON, or at the leading edge of the RUN signal after a PC reset operation (PC-RESET). The ABS data is also transmitted when an alarm is reset, or when the emergency stop state is reset.
- 2) If a check sum discrepancy is detected in the transmitted data, ABS data transmission is retried up to three times. If the check sum discrepancy is still detected after retrying, the ABS check sum error is generated (Y4A ON).
- 3) The following time periods are measured and if the ON/OFF state does not change within the specified time, the ABS communication error is generated (Y4A ON).
 - ON period of ABS transfer mode (Y41)
 - ON period of ABS request (Y42)
 - OFF period of ready to send ABS data (X32).
- 4) If the relationship between the polarity (±) of the received ABS data and the setting value for parameter No. 14 (rotating direction) of A1SD71 involves negative coordinate values, which cannot be handled by the A1SD71, the ABS coordinate error is generated (Y4B ON).

(b) Device list

	X input contact	Y output contact					
X30	ABS bit 0 / completion of positioning	Y40	Servo-on				
X31	ABS bit 1 / zero speed	Y41	ABS transfer mode				
X32	Send ABS data ready / torque limit control	Y42	ABS request				
X33	Servo alarm	Y43	Alarm reset				
X34	Error reset	X44 (Note 2)	Electromagnetic brake output				
X35	Servo emergency stop	Y45 (Note 1)	Clear				
X36	Servo-on	Y48	Servo alarm				
X37	Home position return start	Y49	ABS communication error				
X38	Operation mode I	Y4A	ABS check sum error				
X39	Operation mode II	Y4B	ABS coordinate error				
	D register		M contact				
D0	ABS data transmission counter	M0	ABS data transmission start				
D1	Check sum transmission counter	M1	Sum check completion				
D2	Check sum addition counter	M2	Sum check discrepancy				
D3	ABS data: Lower 16 bits	M3	ABS data ready				
D4	ABS data: Upper 16 bits	M4	Transmission data read enabled				
D5	ABS data 2-bit receiving buffer	M5	Check sum 2 bits read completion				
D6	Check data in case of check sum error	M6	ABS 2 bits read completion				
D7	Retry frequency	M7	ABS 2 bits request				
D8	Forward rotation direction	M8	Servo-on request				
D9	Home position address: Lower 16 bits	M9	Servo alarm				
D10	Home position address: Upper 16 bits	M10	ABS data transmission retry start pulse				
D100	Received shift data: Lower 16 bits	M11	Retry flag setting				
D101	Received shift data: Upper 16 bits	M12	Retry flag reset				
	T timer	M13	PLS processing command				
T0	ABS transfer mode timer	M20 (Note 1)	Clear (CR) ON timer request				
T1	ABS request response timer	M21 (Note 2)	Data set type home position return request				
T2	Retry wait timer		C counter				
Т3	Ready to send response timer	C0	ABS data receive frequency counter				
T10 (Note 1)	Clear (CR) ON timer	C1	Check sum receive frequency counter				
T200	Transmitted data read 10ms delay timer	C2	Retry counter				

Note 1. Necessary when data set type home position return is executed.

^{2.} Necessary in the event of electromagnetic brake output.

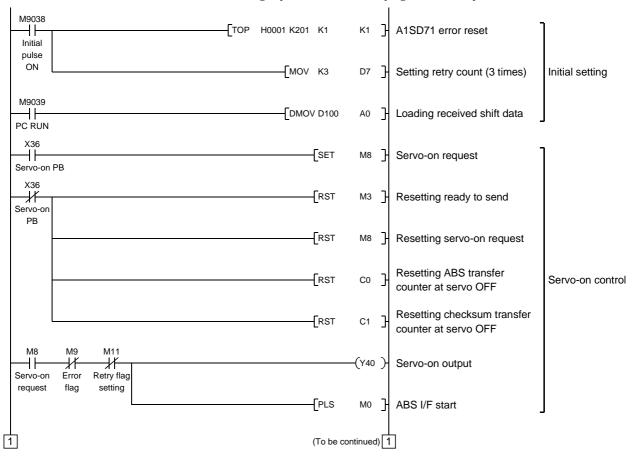
(c) ABS data transfer program for X axis

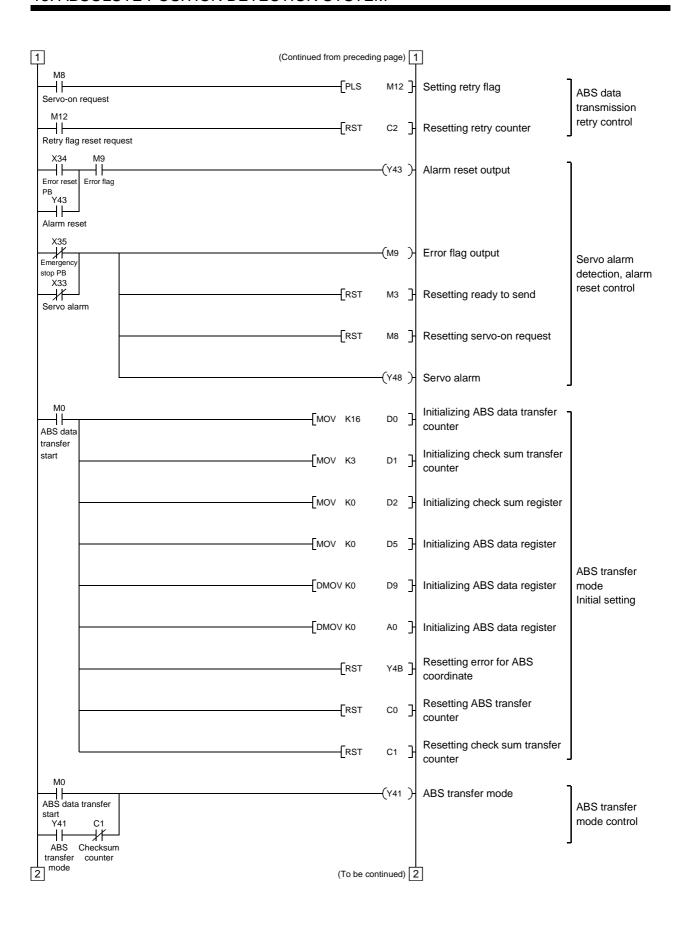
This sequence program example assumes the following conditions:

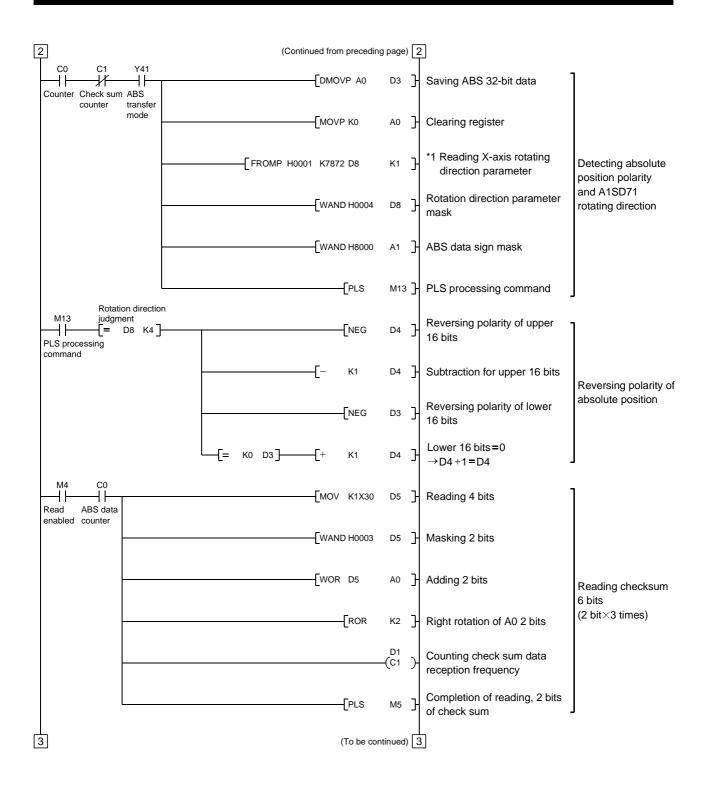
Parameters of the A1SD71-S2 positioning module

1) Unit setting : 3 = pulse (PLS)

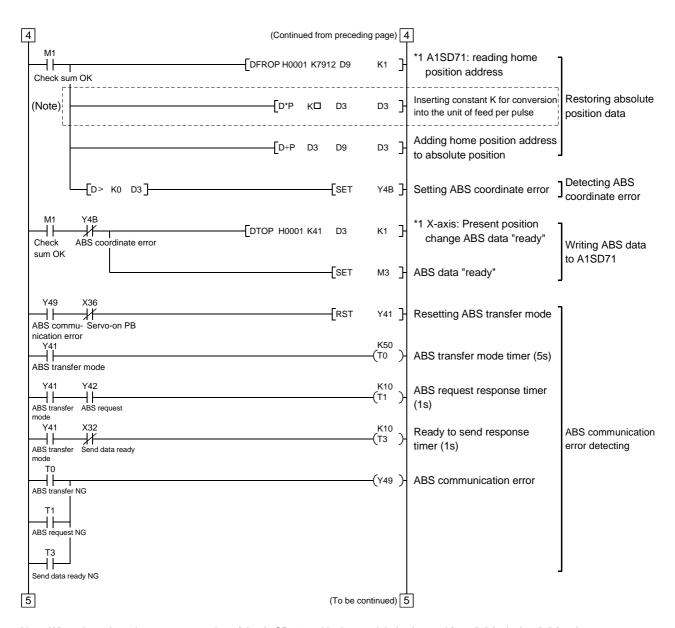
2) Travel per pulse : 1 = 1 pulse

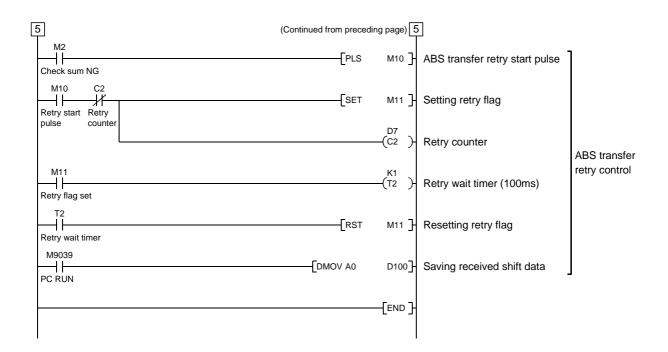

To select the unit other than the pulse, conversion into the unit of the feed command value per pulse is required. Hence, add the following program to the area marked Note in the sequence program.


<Additional program>


——[D*P K □ □ D3 D3]	Item	mm				inch			pulse		
	Unit setting	0				1			3		
	Tuessel non mules	0.1 to	1.0 to	10.0	0.00001	0.0001	0.001	0.00001	0.0001	0.001	
	Travel per pulse				to	to	to	to	to	to	
	Unit of travel	μm/PLS			inch/PLS			de	PLS		
	Constant K for										
	conversion into	1 to	10 to	100	1 to	10 to	100	1 to	10 to	100	None
	unit of travel										

Reference


- For 1µm/PLS, set constant K to 10
- For 5μm/PLS, set constant K to 50
- When the unit setting is pulse, the additional program is not required.



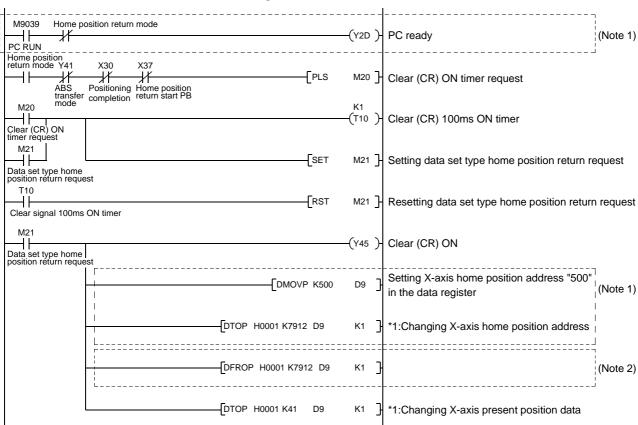
Note. When the unit setting parameter value of the A1SD71 positioning module is changed from "3" (pulse) to "0" (mm), the unit is $\times 0.1 \mu m$ for the input value. To change the unit to $\times 1 \mu m$, and this program to multiple the feed value by 10.

POINT

• When absolute position data is received at power ON, for example, if a negative coordinate position which cannot be handled by the A1SD71 is detected, the ABS coordinate error (Y4B ON) is generated. If this error is generated, move the axis into the positive coordinate zone in JOG operation. Then, turn OFF the servo-on pushbutton switch and turn it ON again.

(d) X-axis control program

This precludes execution of the X-axis start program while M3 (ready to send the ABS data) is OFF.


(e) Dog type home position return

For an example of a program for the dog type home position return operation, refer to the home position return program presented in the User's Manual for A1SD71.

(f) Data set type home position return

After jogging the machine to the position where the home position (e.g. 500) is to be set, choose the home position return mode set the home position with the home position return start (PB ON). After switching power on, rotate the servo motor more than 1 revolution before starting home position return.

Do not turn ON the clear (CR) (Y45) for an operation other than home position return. Turning it ON in other circumstances will cause position shift.

Note 1. If data of the home position address parameter is not written by using an A6GPP programming tol, etc. before starting a program for data set type home position return, the circuits indicated by Note 1 are necessary and the circuit indicated by Note 2 is not necessary.

^{2.} Contrary to Note 1 above, if the home position address is written in the home position address parameter. the circuit indicated by Note 3 is necessary and the circuits indicated by Note 1 are not necessary.

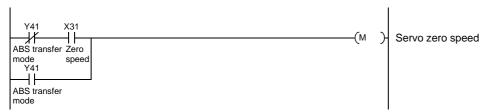
(g) Electromagnetic brake output

During ABS data transfer (for several seconds after the servo-on (SON) is turned on), the servo motor must be at a stop.

Set "1 \square 1 \square "in parameter No. 1 of the servo amplifier to choose the electromagnetic brake interlock (MBR).

(h) Positioning completion

To create the status information for servo positioning completion.


During ABS data transfer (for several seconds after the servo-on (SON) is turned on), the servo motor must be at a stop.

(i) Zero speed

To create the status information for servo zero speed

During ABS data transfer (for several seconds after the servo-on (SON) is turned on), the servo motor must be at a stop.

(j) Torque limiting

To create the status information for the servo torque limiting mode

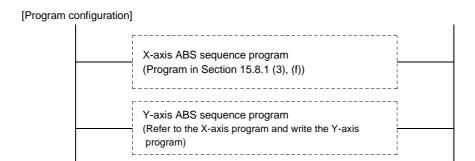
During ABS data transfer (for several seconds after the servo-on (SON) is turned on), the torque limiting must be off.

```
Y41 X32

ABS transfer Torque limiting mode mode

ABS transfer Torque limiting mode
```

(4) Sequence program - 2-axis control

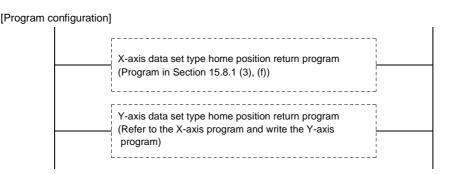

The following program is a reference example for creation of an ABS sequence program for the second axis (Y axis) using a single A1SD71 module. Create a program for the third axis in a similar manner.

(a) Y-axis program

Refer to the X-axis ABS sequence program and create the Y-axis program.

Assign the X inputs, Y outputs, D registers, M contacts, T timers and C counters of the Y axis so that they do not overlap those of the X axis.

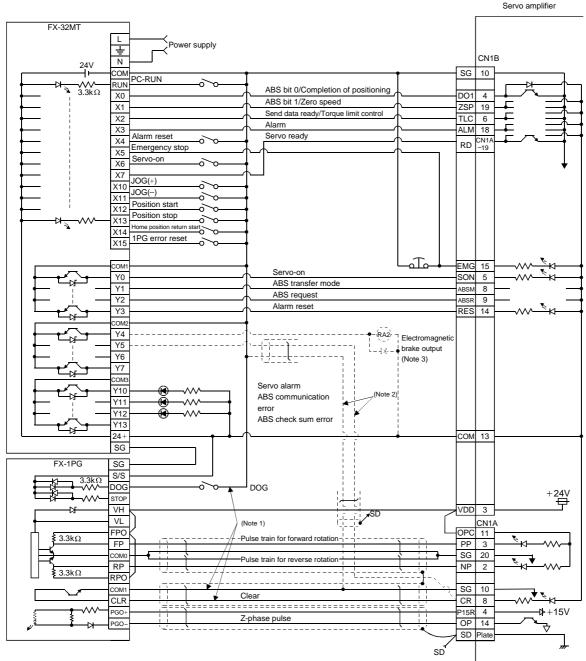
The buffer memory addresses of the A1SD71 differ between the X and Y axes. The instructions marked *1 in the program of Section 15.8.1 (3), (c) should be changed as indicated below for use with the Y axis:


(b) Data set type home position return

Arrange the data set type home position return programs given in Section 15.8.1 (3), (f) in series to control two axes.

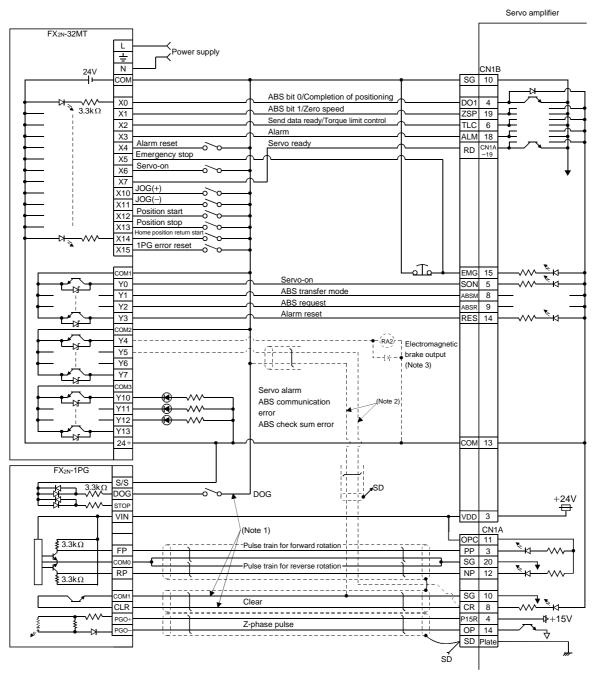
Refer to the X-axis data set type home position return program and create the Y-axis program. Assign the X inputs, Y outputs, D registers, M contacts and T timers of the Y axis so that they do not overlap those of the X axis.

The buffer memory addresses of the A1SD75 differ between the X and Y axes. The instructions marked *1 in the program of Section 15.8.1 (3), (f) should be changed as indicated below for use with the Y axis:


```
[DTOP H0001 K7912 D9 K1] \rightarrow [DTOP H0001 K7922 D9 K1] [DTOP H0001 K41 D9 K1] \rightarrow [DTOP H0001 K341 D9 K1]
```


15.8.2 MELSEC FX(2N)-32MT (FX(2N)-1PG)

(1) Connection diagram

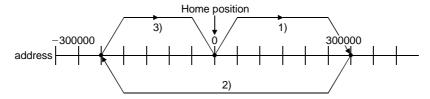

(a) FX-32MT (FX-1PG)

Note 1. To be connected for the dog type home position setting. At this time, do not connect the portions marked (Note 2).

- 2. To be connected for the data set type home position setting. At this time, do not connect the portions marked (Note 1).
- 3. The electromagnetic brake interlock (MBR) should be controlled by connecting the programmable controller output to a relay.

(b) FX2N-32MT (FX2N-1PG)

Note 1. To be connected for the dog type home position setting. At this time, do not connect the portions marked (Note 2).


- 2. To be connected for the data set type home position setting. At this time, do not connect the portions marked (Note 1).
- 3. The electromagnetic brake interlock (MBR) should be controlled by connecting the programmable controller output to a relay.

(2) Sequence program example

(a) Conditions

1) Operation pattern

ABS data transfer is made as soon as the servo-on pushbutton is turned on. After that, positioning operation is performed as shown below:

After the completion of ABS data transmission, JOG operation is possible using the JOG+ or JOG— pushbutton switch.

After the completion of ABS data transmission, dog type home position return is possible using the home position return pushbutton switch.

2) Buffer memory assignment

For BFM#26 and later, refer to the FX2(N)-1PG User's Manual.

BMF No.					
Upper 16	Lower 16	Name and symbol		Set value	Remark
bits	bits				
-	#0	Pulse rate	A	2000	
#2	#1	Feed rate	В	1000	
-	#3	Parameter		H0000	Command unit: Pulses
#5	#4	Max. speed	Vmax	100000PPS	
-	#6	Bias speed	Vbia	0PPS	
#8	#7	JOG operation	Vjog	10000PPS	
#10	#9	Home position return speed (high speed)	V_{RT}	50000PPS	
-	#11	Home position return speed (creep)	VCL	1000PPS	
-	#12	Home position return zero-point signal co	unt N	2 pulses	Initial value: 10
#14	#13	Home position address	HP	0	
-	#15	Acceleration/deceleration time	Ta	200ms	Initial value: 100
-	#16	Not usable			
#18	#17	Target address (I)	P(I)	0	
#20	#19	Operation speed (I)	V(I)	100000	Initial value: 10
#22	#21	Target address (II)	P(II)	0	
#24	#23	Operation speed (II)	V(II)	10	
-	#25	Operation command		H0000	

3) Instructions

When the servo-on pushbutton switch and the GND of the power supply are shorted, the ABS data is transmitted when the servo amplifier power is turned ON, or at the leading edge of the RUN signal after a PC reset operation (PC-RESET). The ABS data is also transmitted when an alarm is reset, or when the emergency stop state is reset.

If check sum discrepancy is detected in the transmitted data, the ABS data transmission is retried up to three times. If the check sum discrepancy is still detected after retrying, the ABS check sum error is generated (Y12 ON).

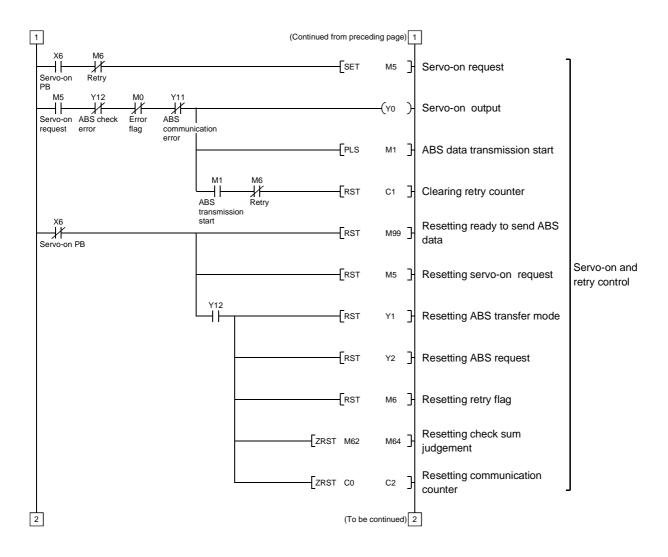
The following time periods are measured and if the ON/OFF state does not change within the specified time, the ABS communication error is generated (Y11 ON).

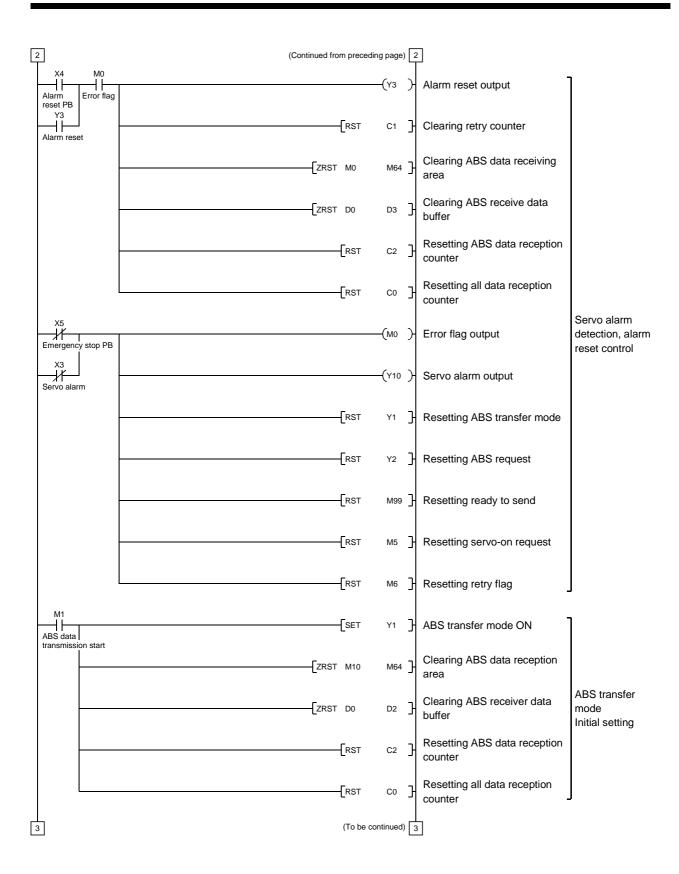
ON period of ABS transfer mode (Y1)

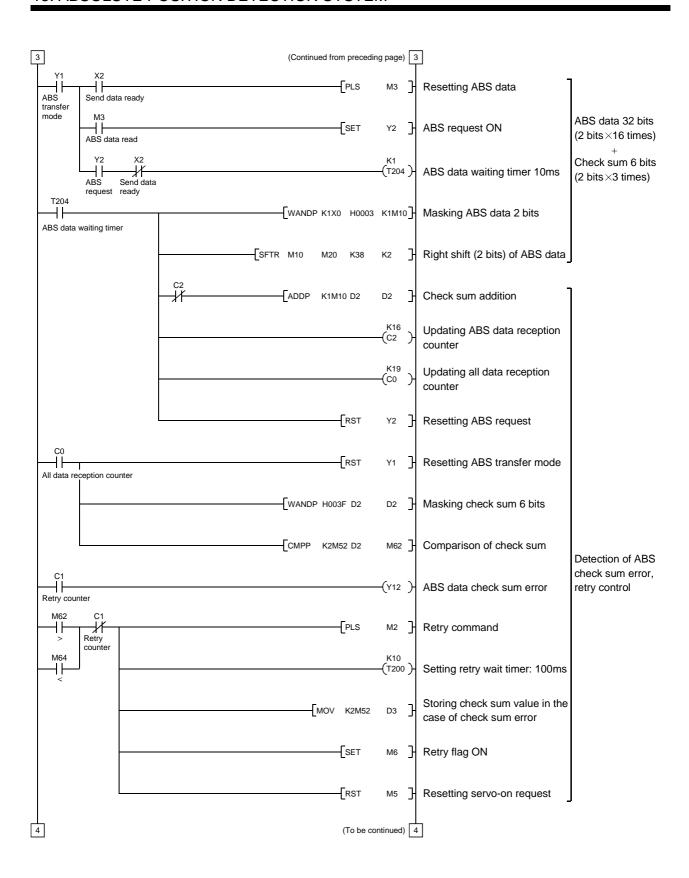
ON period of ABS request (Y2)

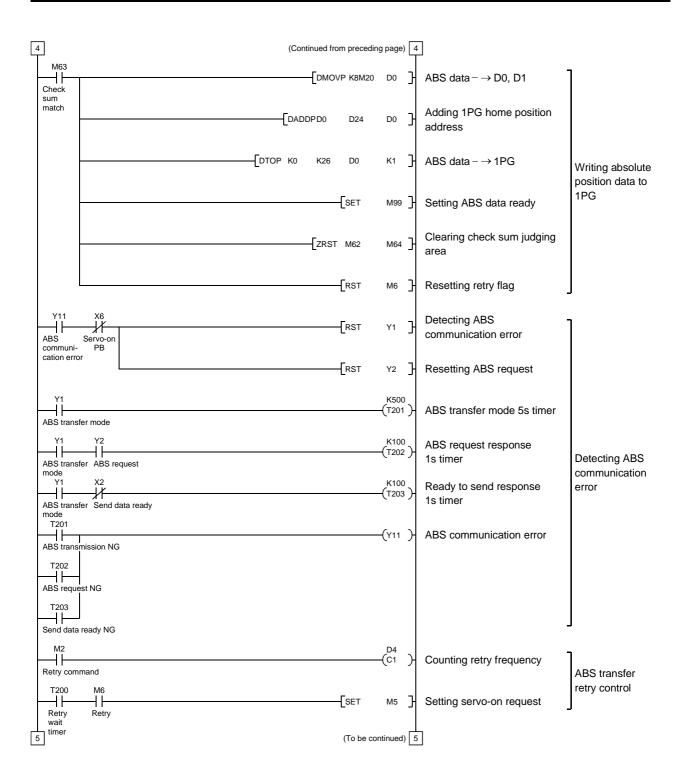
OFF period of ready to send the ABS data (X2).

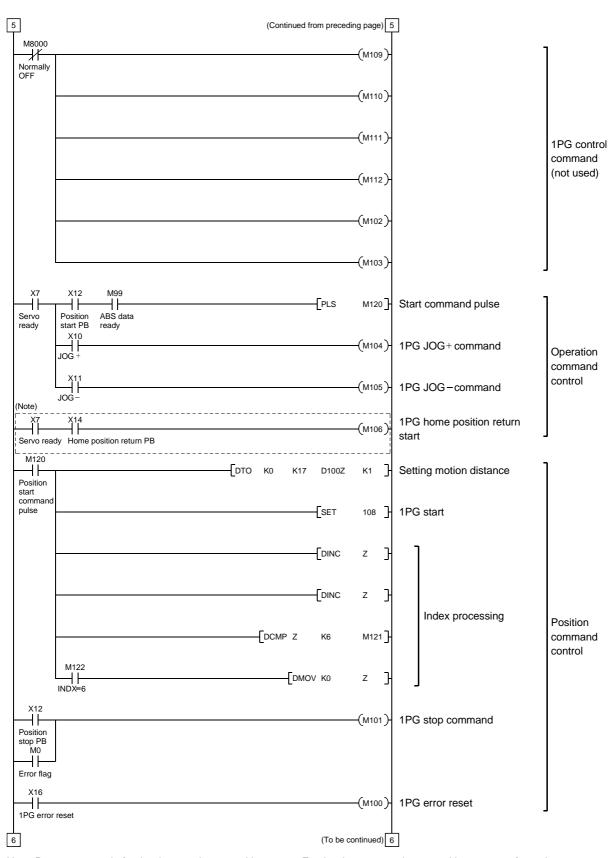
(b) Device list

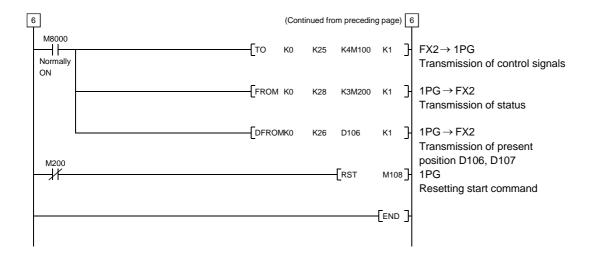

	X input contact	Y output contact						
X0	ABS bit 0 / completion of positioning	Y0	Servo-on					
X1	ABS bit 1 / zero speed	Y1	ABS transfer mode					
X2	Send ABS data ready/ torque limit control	Y2	ABS request					
X3	Servo alarm	Y3	Alarm reset					
X4	Alarm reset PB	Y4 (Note 2)	Electromagnetic brake output					
X5	Servo emergency stop	Y5 (Note 1)	Clear					
X6	Servo-on PB	Y10	Servo alarm					
X7	Servo ready	Y11	ABS communication error					
X10	JOG (+) PB	Y12	ABS check sum error					
X11	JOG (-) PB							
X12	Position start PB							
X13	Position stop PB							
X14	Home position return start PB							
X15	1PG error reset							
	D register		M contact					
D0	ABS data: Lower 16 bits	M0	Error flag					
D1	ABS data: Upper 16 bits	M1	ABS data transmission start					
D2	Check sum addition counter	M2	Retry command					
D3	Check data in case of check sum error	M3	ABS data read					
D4	Transmission retry count in check sum	M4	Spare					
	discrepancy		<u> </u>					
D24	Home position address: Lower 16 bits	M5	Servo-on request					
D25	Home position address: Upper 16 bits	M6	Retry flag					
D106	1PG present position address: Lower 16 bits	M10						
D107	1PG present position address: Upper 16 bits	M11						
	• • •	M12	ABS data 2 bit receiving buffer					
		M13						
		M20						
		1	ABS data 32 bit buffer					
		M51						
		M52						
		1	Check sum 6 bit buffer					
		M57						
		M58	<u></u>					
		M59	For checksum comparison					
	T timer	M62	Sum check discrepancy (greater) >					
T200	Retry wait timer	M63	Sum check discrepancy =					
T201	ABS transfer mode timer	M64	Sum check discrepancy (less) >					
T202	ABS request response timer	M70 (Note 1)	Clear (CR) ON timer request					
T203	Ready to send response timer	M71 (Note 1)	Data set type home position return request					
T204	ABS data waiting timer	M99	ABS data ready					
T210 (Note 1)	Clear (CR) ON timer							
	,		C counter					
		C0	All data reception frequency counter (19 times)					
		C0 C1	Check sum reception frequency counter					
		C2	ABS data reception frequency counter (16 times)					

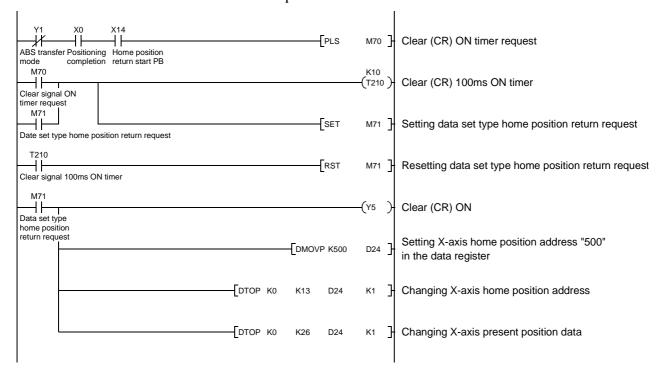

Note 1. Necessary when data set type home position return is executed.


^{2.} Necessary in the event of electromagnetic brake output.


(c) ABS data transfer program for X-axis


M8002			_[DMOV	′ K0	D24	4	Setting home position address-to 0	
pulse	_[то	K0	КЗ	K0	K1	}	Setting 1PG pulse command unit	
	_[DТО	K0	K4	K100000	K1	}	1PG max. speed: 100 kpps	
	_[DTO	K0	K7	K10000	K1	}	1PG Jog speed: 10 kpps	
	-[рто	K0	K9	K50000	K1]	1PG home position return speed: 50 kpps	
	-[то	K0	K11	K1000	K1	}	1PG creep speed: 1 kpps	
	_[то	K0	K12	K2	K1	}	1PG home position return zero-point count: twice	
	_[DTO	K0	K13 D24		K1	}	1PG home position address setting	Initial setting
	ТО КО К15 К200		K200	K1	}	1PG acceleration/deceleration time: 200ms		
	-[рто	K0	K19	K100000	K1	}	1PG operation speed: 100kpps	
			-[DMOV	′ K300000	D10	0]-	Position move account 1: 300000 pulses	
			-[DMOV	′ K-250000	D102]		Position move account 2: –250000 pulses	
			DMOV K0		D10-	4]-	Position move account 3: 0 pulses	
			_[DMOV	MOV K0		}	Clearing index registers V, Z	
	DMOV K4		′ K4	D4	}	Setting "4 times" for check sum error transmission frequency		
1			(To be cont	inued) [1		




Note. Program example for the dog type home position return. For the data set type home position return, refer to the program example in (2), (d) in this section.

(d) Data set type home position return

After jogging the machine to the position where the home position (e.g.500) is to be set, choose the home position return mode set the home position with the home position return start (PBON). After switching power on, rotate the servo motor more than 1 revolution before starting home position return.

Do not turn ON the clear (CR) (Y5) for an operation other than home position return. Turning it ON in other circumstances will cause position shift.

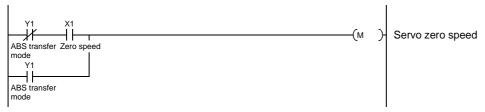
(e) Electromagnetic brake output

During ABS data transfer (for several seconds after the servo-on (SON) is turned on), the servo motor must be at a stop.

Set " $1 \square 1 \square$ " in parameter No. 1 of the servo amplifier to choose the electromagnetic brake interlock (MBR).

(f) Positioning completion

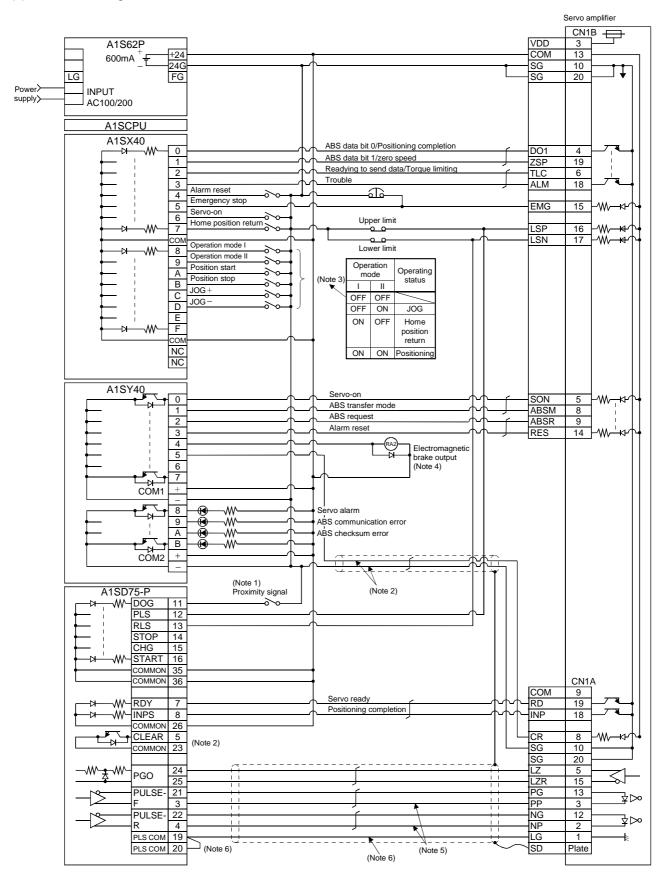
To create the status information for servo positioning completion.


During ABS data transfer (for several seconds after the servo-on (SON) is turned on), the servo motor must be at a stop.

(g) Zero speed

To create the status information for servo zero speed.

During ABS data transfer (for several seconds after the servo-on (SON) is turned on), the servo motor must be at a stop.


(h) Torque limiting

To create the status information for the servo torque limiting mode.

During ABS data transfer (for several seconds after the servo-on (SON) is turned on), the torque limiting must be off.

15.8.3 MELSEC A1SD75

(1) Connection diagram

15. ABSOLUTE POSITION DETECTION SYSTEM

Note 1. For the dog type home position return. Need not be connected for the data set type home position return.

- 2. If the servo motor provided with the zero point signal is started, the A1SD75 will output the deviation counter clear (CR). Therefore, do not connect the clear (CR) of the MR-J2-A to the A1SD75 but connect it to the output module of the programmable controller.
- 3. This circuit is provided for your reference.
- 4. The electromagnetic brake output should be controlled via a relay connected to the programmable controller output.
- 5. Use the differential line driver system for pulse input. Do not use the open collector system.
- 6. To reinforce noise suppression, connect LG and pulse output COM.

(2) Sequence program example

(a) Conditions

- 1) When the servo-on signal and power supply GND are shorted, the ABS data is transmitted at power-on of the servo amplifier or on the leading edge of the RUN signal after a PC reset operation (PC-RESET). The ABS data is also transmitted when an alarm is reset or when an emergency stop is reset.
- 2) If a checksum mismatch is detected in the transmitted data, data transmission is retried up to three times. If the checksum mismatch still persists after the retries, the ABS checksum error occurs (Y3A ON).
- 3) The following time periods are measured. If the ON/OFF state does not change within the specified time, the ABS communication error occurs change within the specified time, the ABS communication error occurs (Y39 ON):
 - ON period of ABS transfer mode (Y31)
 - ON period of ABS request (Y32)
 - OFF period of reading to send ABS data (X22)

(b) Device list

	X input contact	Y output contact					
X20	ABS bit 0 / positioning completion	Y30	Servo-on				
X21	ABS bit 1 / zero speed	Y31	ABS transfer mode				
X22	Reading to send ABS data / limiting torque	Y32	ABS request				
X23	Servo alarm	Y33	Alarm reset				
X24	Alarm reset	X34 (Note 2)	Electromagnetic brake output				
X25	Servo emergency stop	Y35 (Note 1)	Clear				
X26	Servo-on	Y38	Servo alarm				
X27	Home position return start 2)	Y39	ABS communication error				
X28	Operation mode I	Y3A	ABS checksum error				
X29	Operation mode II		-				
1)	D register		M contact				
D0	ABS data transmission counter	M5	ABS data transmission start				
D1	Checksum transmission counter	M6	Sum check completion				
D2	Checksum addition register	M7	Sum check mismatch				
D3	ABS data: Lower 16 bits	M8	ABS data ready				
D4	ABS data: Upper 16 bits	M9	Transmission data read enabled				
D5	ABS data 2-bit receiving buffer	M10	Checksum 2 bits read completion				
D6	Check data in case of checksum error $_{4)}$	M11	ABS 2 bits read completion				
D7	Number of retries	M12	ABS 2 bits request				
D8	Forward rotation direction	M13	Servo-on request				
D9	Home position address: Lower 16 bits	M14	Servo alarm				
D10	Home position address: Upper 16 bits	M15	ABS data transmission retry start pulse				
D11	Drive unit ready data	M16	Retry flag set				
D12	Home position return completion data	M17	Retry flag reset				
D110	Received shift data: Lower 16 bits	M18	PLS processing command				
D111	Received shift data: Upper 16 bits	M20 (Note 1)	Clear (CR) ON timer request				
~3)		M21 (Note 1)	Data set type home position return request				
T0	ABS transmission mode timer	M22	Home position return processing				
T1	ABS request response timer		instruction				
T2	Retry wait timer	M23	Current position change processing				
T3	ABS data send reading response timer		instruction				
T10 (Note 1)	Clear (CR) ON timer	M24	Current position change flag				
T200	Transmitted data read 10ms delay timer		C counter				
		C0	ABS data receive times counter				
		C1	Checksum receive times counter				
		C2	Retry counter				

Note 1. Required for data set type home position return.

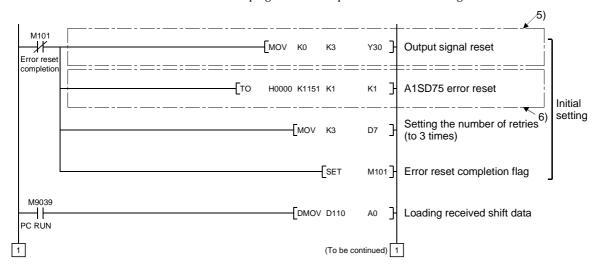
^{2.} Required for electromagnetic brake output.

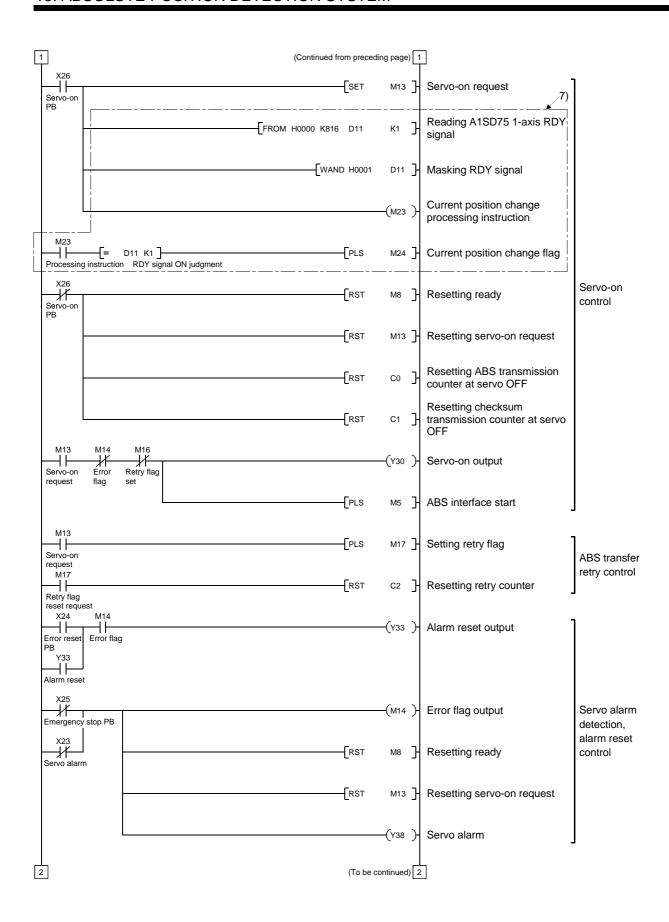
(c) ABS data transfer program for X axis

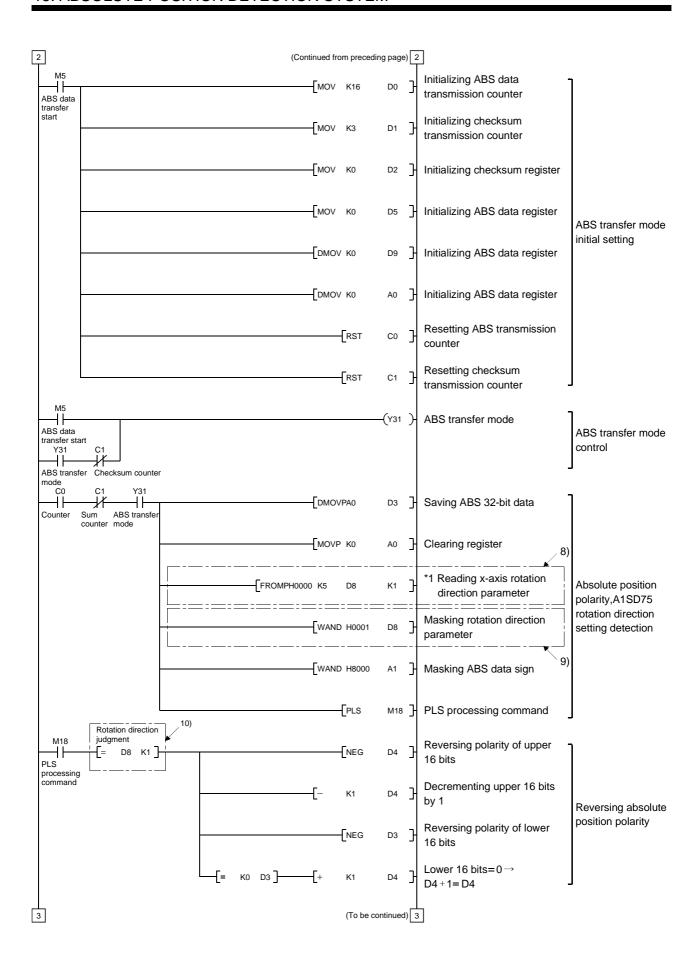
This sequence program example assumes the following conditions:

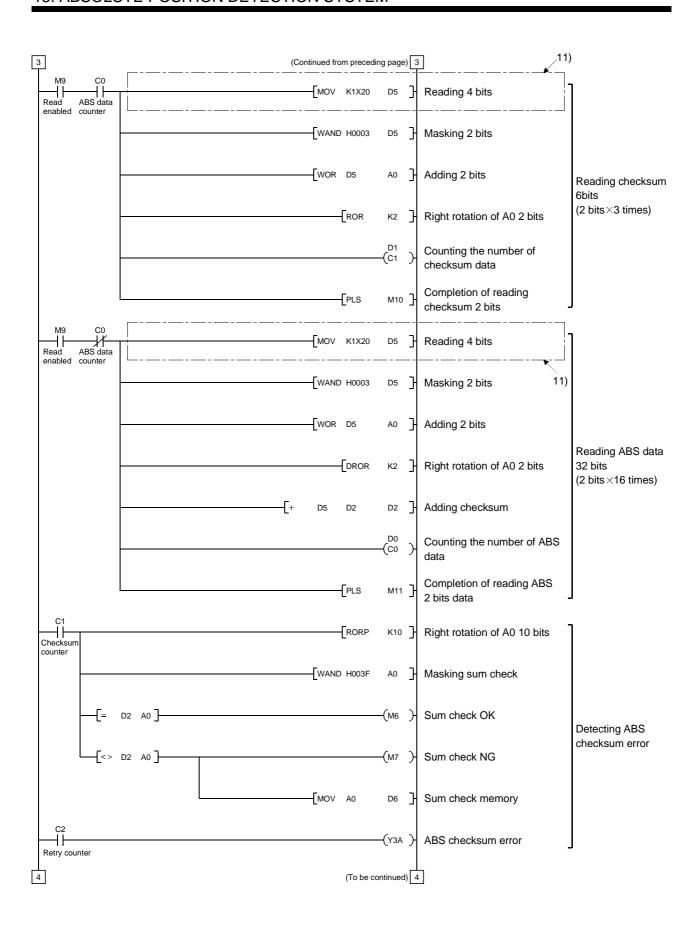
Parameters of the A1SD75-P1 positioning module

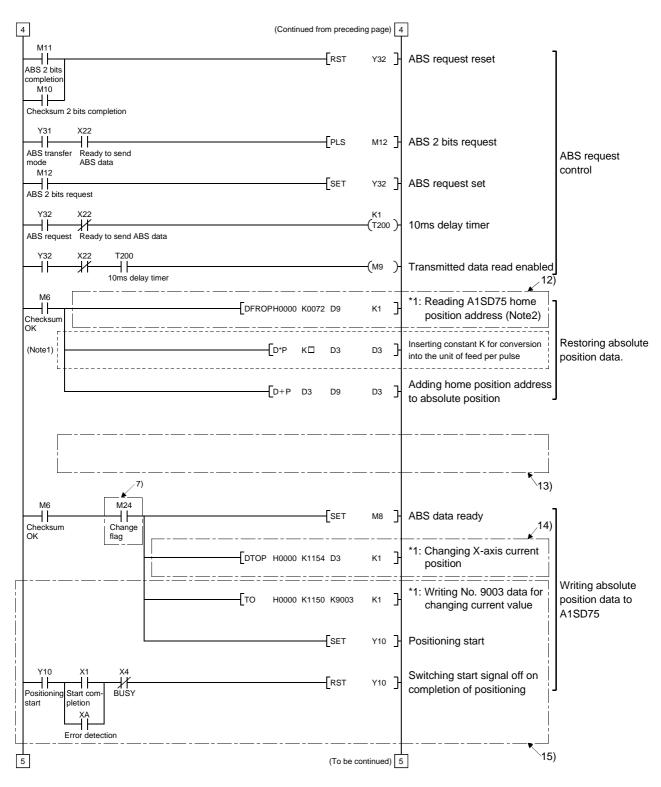
1) Unit setting :3 = pulse (PLS)

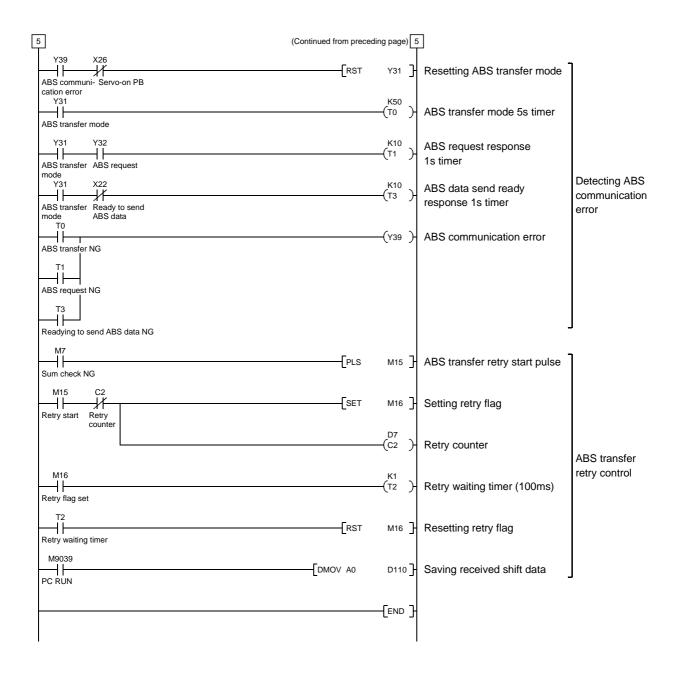

2) Travel per pulse :1 = 1 pulse

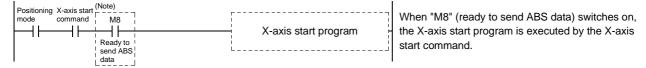

To select the unit other than the pulse, conversion into the unit of the feed value per pulse is required. Hence, add the following program to the area marked (Note) in the sequence program:


<additional pr<="" th=""><th>ogram></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></additional>	ogram>														
——[D * P K □□ D3 D3]		Item	mm			inch				degree				pulse	
		Unit setting	0				1				2				3
		Travel per pulse	0.1 to	1 to	10 to	100	0.00001	0.0001	0.001	0.01	0.00001	0.0001	0.001	0.01	
		Traver per puise	0.1 10	1 10	10 10	100	to	to	to	to	to	to	to	to	
		Unit of travel		μm/	PLS		inch/PLS				degree/PLS				PLS
		Constant K for conversion into unit of travel	1 to	10 to	100 to	1000	1 to	10 to	100 to	1000	1 to	10 to	100 to	1000	None


Reference


- For 1µm/PLS, set constant K to 10
- For $5\mu m/PLS$, set constant K to 50
- The additional program is not required for the unit setting is PLS.

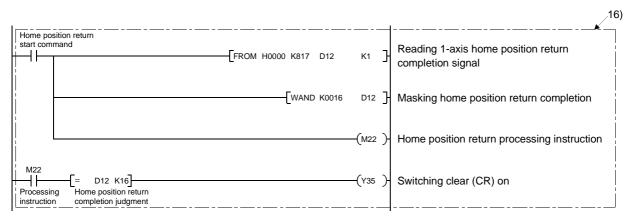



Note1. When the unit setting parameter value of the A1SD75 positioning module is changed from "3" (pulse) to "0" (mm), the unit is \times 0.1 μ m for the input value. To set the unit to \times 1 μ m, add this program to multiple the feed value by 10.

^{2.} The home position address loaded from flash ROM of normal positioning module can be obtained. For updating the home position address by the home position setting, refer to (2)(f)Data set type home position return in this Section.

(d) X-axis program

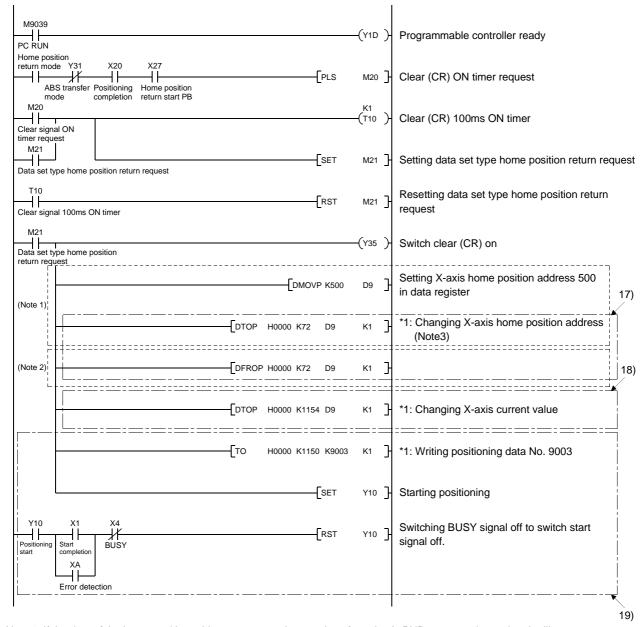
Do not execute the X-axis program while the ABS ready (M8) is off.



(e) Dog type home position return

Refer to the home position return program in the A1SD75 User's Manual.

Note that this program requires a program which outputs the clear (CR) (Y35) after completion of home position return.


Add the following program:

(f) Data set type home position return

After jogging the machine to the position where the home position (e.g. 500) is to be set, choose the home position return mode and set the home position with the home position return start (PBON). After switching power on, rotate the servo motor more than 1 revolution before starting home position return.

Do not turn ON the clear (CR) (Y35) for an operation other than home position return. Turning it on in other circumstances will cause position shift.

Note 1. If the data of the home position address parameter is not written from the A7PHP programming tool or the like before starting the data set type home position return program, this sequence circuit (Note 1) is required and the sequence circuit (Note 2) is not required.

- 2. Contrary to above 2, if the home position address is written in the home position address parameter, the sequence circuit (Note1) is not required but this sequence circuit (Note 1) is required.
- 3. Changes are stored temporarily to buffer memory at this time. An additional processing is required when changes should be reflected to memory for OS or flash ROM. For details, refer to the positioningmodule user's manual.

(g) Electromagnetic brake output

During ABS data transfer (for several seconds after the servo-on (SON) is turned on), the servo motor must be at a stop.

Set " $1 \square 1 \square$ " in parameter No. 1 of the servo amplifier to choose the electromagnetic brake interlock (MBR).

(h) Positioning completion

To create the status information for servo positioning completion.

During ABS data transfer (for several seconds after the servo-on (SON) is turned on), the servo motor must be at a stop.

(i) Zero speed

To create the status information for servo zero speed.

During ABS data transfer (for several seconds after the servo-on (SON) is turned on), the servo motor must be at a stop.

(j) Torque limiting

To create the status information for the servo torque limiting mode.

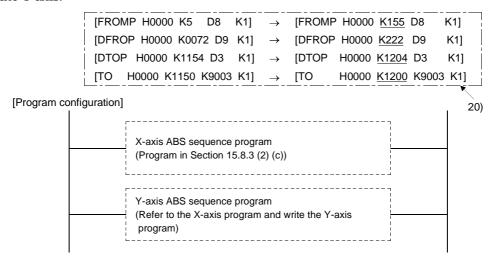
During ABS data transfer (for several seconds after the servo-on (SON) is turned on), the torque limiting must be off.

```
Y31 X22

ABS transfer Torque limiting mode

M Servo torque limiting mode
```

(3) Sequence program - 2-axis control

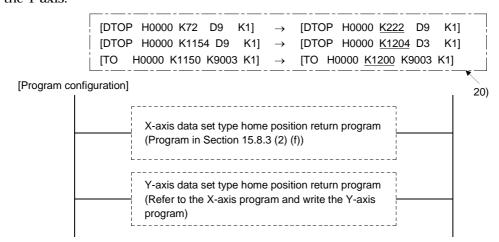

The following program is a reference example for creation of an ABS sequence program for the second axis (Y axis) using a single A1SD75 module. Create a program for the third axis in a similar manner.

(a) Y-axis program

Refer to the X-axis ABS sequence program and create the Y-axis program.

Assign the X inputs, Y outputs, D registers, M contacts, T timers and C counters of the Y axis so that they do not overlap those of the X axis.

The buffer memory addresses of the A1SD75 differ between the X and Y axes. The instructions marked *1 in the program of Section 15.8.3 (2), (c) should be changed as indicated below for use with the Y axis:



(b) Data set type home position return

Arrange the data set type home position return programs given in Section 15.8.3 (2), (f) in series to control two axes.

Refer to the X-axis data set type home position return program and create the Y-axis program. Assign the X inputs, Y outputs, D registers, M contacts and T timers of the Y axis so that they do not overlap those of the X axis.

The buffer memory addresses of the A1SD75 differ between the X and Y axes. The instructions marked *1 in the program of Section 15.8.3 (2), (f) should be changed as indicated below for use with the Y axis:

(4) Differences between A1SD75 and A1SD71

The sequence programs shown in (2) of this section differ from those for the A1SD71 in the following portions. 1) to 20) in the following sentences indicate the numbers in the programs given in (2) of this section.

(a) Devices used

Since the A1SD75 is a one-slot module which occupies 32 I/O points, the I/O devices are different, as indicated by 1) and 2), from those of the two-slot A1SD71 which occupies 48 point. The A1SD75 uses the devices indicated in the following table, and its D registers and M contacts are different as indicated by 3) and 4).

Davies same	Devices			A 1: +:	Bit device :Data at ON	
Device name	Axis 1	Axis 2	Axis 3	Application	Data register :Stored data	
		X0		A1SD75 ready	Not ready/ WDT error	
Input	X4	X5	X6	BUSY	BUSY(running)	
	XA	XB	XC	Error detection	Error detection	
	Y10	Y11	Y12	Positioning start	Start being requested	
	Y13	Y14	Y1C	Axis stop	Stop being requested	
Output	Y16	Y18	Y1A	Forward rotation jog start	Forward rotation being started	
Output	Y17	Y19	Y1B	Reverse rotation jog start	Reverse rotation being started	
	Y1D			Programmable controller ready	Programmable controller CPU normal	
	M0			Parameter setting completion flag	Setting complete	
	M1			Flash ROM registration processing flag	Processing	
	M2	M3	M4	Axis error reset requesting flag	Requesting	
internal relay	M100			A1SD75 normal flag	A1SD75 normal	
	M101			Initial error reset completion flag	Error reset complete	
		M102		All BUSY signal OFF flag	All BUSY signal OFF	
	M103			A1SD75 operable flag	Operable	
		D100		Flash ROM registration results	Registration results	
Data register	D101	D102	D103	Axis error code	Error code	
Data register	D104	D105	D106	Axis warning code	Warning code	
	D107	D108	D109	Axis error reset results	Axis error reset results	

(b) ABS sequence program example

1) Initial setting

To reset the error of the A1SD75, the program 5) is added to reset all output signals at start-up. The axis error reset buffer memory address is changed from 201 to 1154 (axis 1) and the slot number from H0001 (slot number 1) to H0000 (slot number 2) 6).

- 2) Absolute position polarity, A1SD75 rotation direction setting detection
 - The slot number and buffer memory of the X-axis rotation direction parameter reading area are changed from [FROMP H0001 K7872 D8 K1] to [FROMP $\underline{H0000}$ $\underline{K5}$ D8 K1] 8).
 - The rotation direction parameter masking area is changed from [WAND H0004 D8] to [WAND H0001 D8] 9).
- 3) Reversing absolute position polarity
 - The rotation direction judging area is changed from [= D8 K4] to [= D8 K1] 10).
- 4) Reading checksum 6 bits, reading ABS data 32 bits
 - The 4 bits reading area is changed from [MOV K1 X30D5] to [MOV K1X20 D5] 11).
- 5) Restoring absolute position data
 - The slot number and buffer address of the A1SD75 home position address reading area are changed from [DFROP H0001 K7912 D9 K1] to [DFROP H0000 K72 D9 K1] 12)

6) Writing absolute position data to A1SD75

The slot number and buffer address of the X-axis current value changing area are changed from [DTOP H0001 K41 D3 K1] to [DTOP H0000 K1154 D3 K1] 14). When the current value is changed in the A1SD75, the current feed value is changed at the start of positioning data No.9003. Therefore, the starting program for positioning data No.9003 15) is added.

7) X-axis data set type home position return program

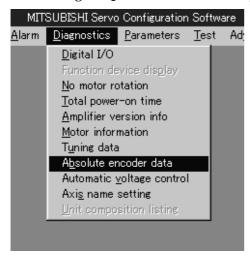
The slot numbers and buffer addresses of the X-axis home position address changing area are changed from [DTOP H0001 K7912 D9 K1] to [DTOP H0000 K72 D9 K1] and from [DFROP H0001 K7912 D9 K1] to [DFROP H0000 K72 D9 K1] 17).

The slot number and buffer address of the X-axis current value changing area are changed from [DTOP H0001 K41 D3 K1] to [DTOP H0000 K1154 D3 K1] 18). When the current value is changed in the A1SD75, the current feed value is changed at the start of positioning data No.9003. Therefore, the starting program for positioning data No.9003 19) is added.

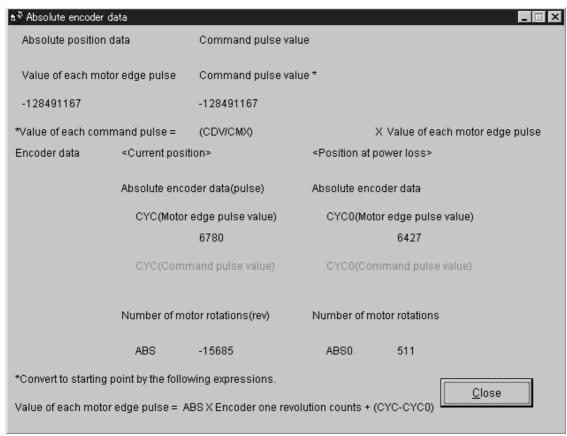
- 8) Y-axis sequence program, Y-axis data set type home position return program.
 - The slot numbers and buffer addresses are changed as indicated by 20).
- 9) Writing absolute position data to A1SD75

The A1SD75 allows the current position to be changed only when the ready (RD) of the Servo amplifier is on. Therefore, if the CPU scan is fast, the program for A1SD71 may change the current position before the ready (RD) switches on. 7) is added because the current position must be changed after it has been confirmed that the drive unit ready (RD) of the A1SD75 (D75) has switched on/off.

10) ABS coordinate error detection


As the A1SD75 can handle the negative-polarity coordinate position that the A1SD71 could not handle, the program for ABS coordinate error detection is deleted. 13)

11) Dog type home position return program


Due to the changes in wiring described in (4), (a), 4) of this section, the program for outputting the clear (CR) (Y35) after completion of a home position return is required. 16)

15.9 Confirmation of absolute position detection data

You can confirm the absolute position data with MR Configurator (servo configuration software). Crick "Diagnostics" and "Absolute Encoder Data" to open the absolute position data display screen. (1) Cricking "Diagnostics" in the menu opens the sub-menu as shown below:

(2) By cricking "Absolute Encoder Data" in the sub-menu, the absolute encoder data display window appears.

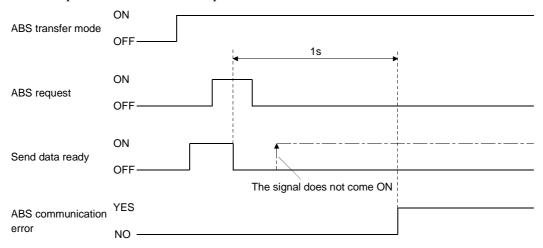
(3) Crick the "Close" button to close the absolute encoder data display window.

15.10 Absolute position data transfer errors

15.10.1 Corrective actions

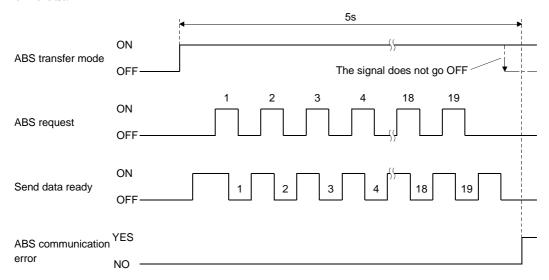
(1) Error list

The number within parentheses in the table indicates the output coil or input contact number of the A1SD71.

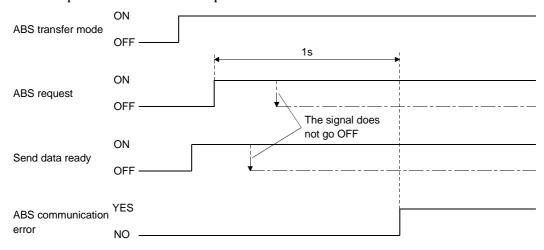

Name	Outpu		Description	Cause	Action
(Note) ABS communication error	Y49	Y11	 The ABS data transfer mode signal (Y41) is not completed within 5s. The ready to send signal (X32) is not turned OFF 	Wiring for ABS transfer mode signal, ABS data request signal, or ready to send signal is disconnected or connected to the SG terminal.	Correct the wiring.
			ON.	PC ladder program wrong. Faulty PLC output or input module.	Correct the ladder. Change the input or output module.
			3. The ready to send signal (X32) remains OFF for longer than 1s.	4. Faulty printed board in the servo amplifier.5. Power supply to the servo amplifier is OFF.	Change the amplifier Turn on the power to the servo amplifier.
ABS data check sum error	Y4A	Y12	ABS data sumcheck resulted in mismatch four times consecutively.	1. Wiring for the ABS data signal (ABS bit 0 (PF), bit 1 (ZSP)) is disconnected or connected to the SG terminal. 2. PC ladder program wrong.	Correct the wiring. Correct the ladder.
				3. Faulty PLC input module. 4. Faulty printed board in the servo amplifier.	Change the input module. Change the amplifier.
ABS coordinate error	Y4B		• The motor position is in the negative coordinate value range when the servo is turned ON or when power supply is turned ON.	1. The servo is turned ON or the power supply is turned ON near the machine home position or in the zone in which addresses decrease.	 Reconsider the position where the servo is turned ON. Set the home position for positioning apart from the machine home position.
				2. The machine falls on a vertical axis when the servo- on (SON) is turned ON/OFF.	Change the electromagnetic brake operation sequence.
Servo alarm	Y48	Y10	Alarm occurred in the servo amplifier.	Emergency stop (EMG) of the servo amplifier was turned off.	After ensuring safety, turn EMG on.
				2. Trouble (ALM) of the servo amplifier was turned on.	Refer to Section 10.2.2 and take action.

Note. Refer to (2) in this section for details of error occurrence definitions.

(2) ABS communication error


(a) The OFF period of the send data ready signal output from the servo amplifier is checked. If the OFF period is 1s or longer, this is regarded as a transfer fault and the ABS communication error is generated.

The ABS communication error occurs if the ABS time-out warning (AL.E5) is generated at the servo amplifier due to an ABS request ON time time-out.



(b) The time required for the ABS transfer mode signal to go OFF after it has been turned ON (ABS transfer time) is checked.

If the ABS transfer time is longer than 5s, this is communication error occurs if the ABS time-out warning (AL.E5) is generated at the servo amplifier due to an ABS transfer mode completion time time-out.

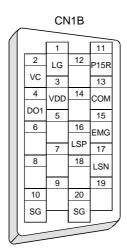
(c) To detect the ABS time-out warning (AL.E5) at the servo amplifier, the time required for the ABS request signal to go OFF after it has been turned ON (ABS request time) is checked. If the ABS request remains ON for longer than 1s, it is regarded that an fault relating to the ABS request signal or the send data ready (TLC) has occurred, and the ABS communication error is generated. The ABS communication error occurs if the ABS time-out warning (AL.E5) is generated at the servo amplifier due to an ABS request OFF time time-out.

15.10.2 Error resetting conditions

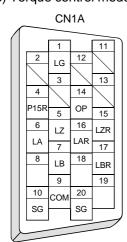
Always remove the cause of the error before resetting the error.

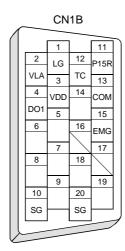
Name	Output coil		Servo status	Resetting condition	
Name	AD71	1PG	Servo status	Resetting condition	
ABS communication error	Y49	Y11	Ready (RD) off	Reset when servo-on (SON) PB	
				(X36) signal turns off.	
ABS checksum error	Y4A	Y12	Ready (RD) on	For AD71	
				Reset when servo-on (SON) PB	
				(X36) signal turns from off to on.	
				For FX-1PG	
				Reset when servo-on (SON) PB	
				(X36) signal turns off.	
ABS coordinate error	Y4B		Ready (RD) on	Reset when servo-on (SON) PB	
				(X36) signal turns from off to on	
				after a motion to (+) coordinate is	
				made by jog operation.	
Servo alarm	Y48	Y10	Ready (RD) on	Reset when alarm reset PB turns	
				on or power switches from off to on.	

App 1. Signal arrangement recording sheets

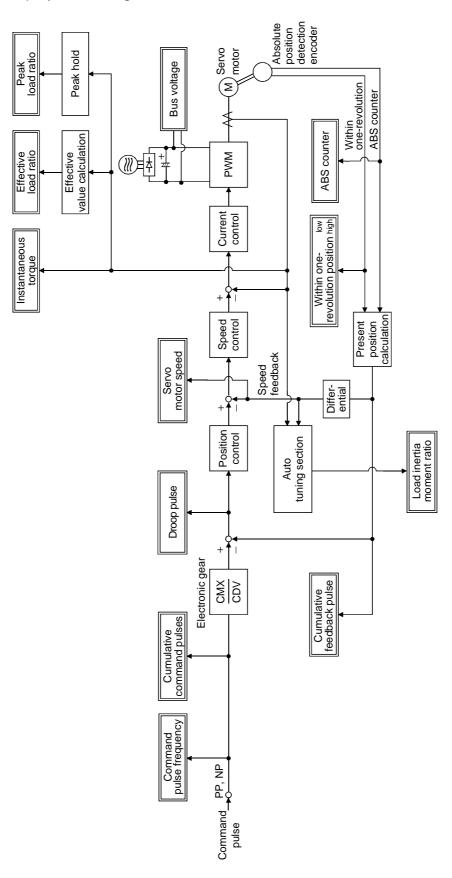

(1) Position control mode

	CN	I1A		
	1		11	7
2	LG	12	OPC	
NP	3	NG	13	
4	PP	14	PG	
P15R	5	OP	15	
6	LZ	16	LZR	
LA	7	LAR	17	
8	LB	18	LBR	
	9		19	
10	СОМ	20		
SG		SG		
		_		1


~	_	CI	N1B		
		1		11	
	2	LG	12	P15R	
		3	TLA	13	
	4	VDD	14	СОМ	
	DO1	5		15	
	6		16	EMG	
		7	LSP	17	
	8		18	LSN	
		9		19	
	10		20		
	SG		SG		,
					7


(2) Speed control mode

_		CN	1A		
		1		11	\cap
	2	LG	12		
		3		13	
	4	/	14	/	
	P15R	5	OP	15	
	6	LZ	16	LZR	
	LA	7	LAR	17	
	8	LB	18	LBR	
		9		19	
	10	СОМ	20		
	SG		SG		IJ
					1



(3) Torque control mode

App 2. Status display block diagram

App 3. Combination of servo amplifier and servo motor

The servo amplifier software versions compatible with the servo motors are indicated in the parentheses. The servo amplifiers whose software versions are not indicated can be used regardless of the versions.

	1
Servo motor	Servo amplifier
	(Software version)
HC-KFS053	MR-J2S-10A
110 111 5000	MR-J2S-10A1
HC-KFS13	MR-J2S-10A
TIC-KF515	MR-J2S-10A1
HC-KFS23	MR-J2S-20A
HC-KF323	MR-J2S-20A1
HC VEC49	MR-J2S-40A
HC-KFS43	MR-J2S-40A1
HC-KFS73	MR-J2S-70A (Version A4 or later)
LIC MECOTO	MR-J2S-10A
HC-MFS053	MR-J2S-10A1
HC MEC10	MR-J2S-10A
HC-MFS13	MR-J2S-10A1
HG MEGOO	MR-J2S-20A
HC-MFS23	MR-J2S-20A1
110 1 (5040	MR-J2S-40A
HC-MFS43	MR-J2S-40A1
HC-MFS73	MR-J2S-70A
HC-SFS81	MR-J2S-100A (Version A1 or later)
HC-SFS121	MR-J2S-200A (Version A1 or later)
HC-SFS201	MR-J2S-200A (Version A1 or later)
HC-SFS301	MR-J2S-350A (Version A1 or later)
HC-SFS52	MR-J2S-60A
HC-SFS102	MR-J2S-100
HC-SFS152	MR-J2S-200A
HC-SFS202	MR-J2S-200A
HC-SFS352	MR-J2S-350A
HC-SFS502	MR-J2S-500A (Version B0 or later)
HC-SFS702	MR-J2S-700A (Version B0 or later)
HC-SFS53	MR-J2S-60A (Version A1 or later)
HC-SFS103	MR-J2S-100A (Version A1 or later)
HC-SFS153	MR-J2S-200A (Version A1 or later)
HC-SFS203	MR-J2S-200A (Version A1 or later)
HC-SFS353	MR-J2S-350A (Version A1 or later)

Servo motor	Servo amplifier
Cerve motor	(Software version)
HC-RFS103	MR-J2S-200A
HC-RFS153	MR-J2S-200A
HC-RFS203	MR-J2S-350A (Version B0 or later)
HC-RFS353	MR-J2S-500A (Version B0 or later)
HC-RFS503	MR-J2S-500A (Version B0 or later)
HC-UFS72	MR-J2S-70A
HC-UFS152	MR-J2S-200A
HC-UFS202	MR-J2S-350A (Version B0 or later)
HC-UFS352	MR-J2S-500A (Version B0 or later)
HC-UFS502	MR-J2S-500A (Version B0 or later)
HC-UFS13	MR-J2S-10A
HC-UFS13	MR-J2S-10A1
HC-UFS23	MR-J2S-20A
HC-UF323	MR-J2S-20A1
HC-UFS43	MR-J2S-40A
HC-UFS43	MR-J2S-40A1
HC-UFS73	MR-J2S-70A
HC-LFS52	MR-J2S-60A (Version B3 or later)
HC-LFS102	MR-J2S-100A (Version B3 or later)
HC-LFS152	MR-J2S-200A (Version B3 or later)
HC-LFS202	MR-J2S-350A (Version B3 or later)
HC-LFS302	MR-J2S-500A (Version B3 or later)
HA-LFS801	MR-J2S-11KA
HA-LFS12K1	MR-J2S-11KA
HA-LFS15K1	MR-J2S-15KA
HA-LFS20K1	MR-J2S-22KA
HA-LFS25K1	MR-J2S-22KA
HA-LFS11K1M	MR-J2S-11KA
HA-LFS15K1M	MR-J2S-15KA
HA-LFS502	MR-J2S-500A (Version B0 or later)
HA-LFS702	MR-J2S-700A (Version B0 or later)
HA-LFS11K2	MR-J2S-11KA
HA-LFS15K2	MR-J2S-15KA
HA-LFS22K2	MR-J2S-22KA

Appendix	
MEMO	

REVISIONS

*The manual number is given on the bottom left of the back cover.

Print data	*Manual number	Revision
Nov.,1999	SH(NA)030006-A	First edition
Sep.,2000	SH(NA)030006-B	Addition of single-phase 100VAC specifications
		Compatible Servo Configuration software model name change
		Compliance with EC Directives 1: Review of sentence
		Section 1.2: Review of function block diagram
		Section 1.3: Moving of servo amplifier standard specifications
		Review of torque limit description in position control mode
		Review of torque limit description in speed control mode
		Deletion of torque linearity in torque limit mode
		Addition of speed limit in torque control mode
		Section 3.1.1 (1): Addition of encoder Z-phase pulse connection
		Addition of Note for use of junction terminal block
		Section 3.1.1 (2): Addition of Note for increased noise immunity
		Section 3.1.2: Addition of Note for input of negative voltage
		Section 3.1.3: Addition of Note for input of negative voltage
		Section 3.3.1 (2): Review of Note
		Section 3.4.1 (4): Addition of description about electronic gear switching
		Section 3.4.3 (1)(a): Review of description for low voltage
		Section 3.5: Change in timing chart
		Section 3.5 3): Review of description
		Section 3.6.2 (7): Review of connection
		Section 3.9: Review of POINT
		Section 3.9 (3)(b),(c): Change in timing chart
		Section 3.9 (3)(d),(e): Addition
		Section 5.1.2 (2): Deletion of description as to parameter No. 22 TC, TLA
		Addition of parameter No. 27 setting example
		Correction of parameter No. 35 setting range
		Review of parameter No. 47, 48 sentences
		Section 5.2.5: Correction of operation pattern diagram
		Section 6.2.2: Review of within one-revolution position sentence
		Section 6.3: Review of automatic VC offset description
		Section 6.6 (2)(a): Review of Note
		Section 6.8: Review of PL sentence
		Chapter 7: Addition of POINT
		Section 7.3.2 (1), (2): Review of sentence makeup
		Section 7.4: Addition
		Section 8.1.1: Addition
		Section 8.3.2: Addition
		Section 10.1.1 (1): Addition of Investigation item at power-on
		Section 10.1.2: Addition of Investigation item at power-on
		Addition of Investigation item at on of ST1 or ST2
		Section 10.1.3: Addition of Investigation item at power-on
		Addition of Investigation item at on of ST1 or ST2
		Section 10.2: Addition of POINT
		Section 10.2.2: Review of Cause of AL.10
		Deletion of Cause 4 of AL.16
		Review of Cause and Action of AL.24
		Addition of description to AL.25

Print data	*Manual number	Revision
Sep.,2000	SH(NA)030006-B	Section 10.2.2: Addition of description to AL.30
		Addition of Cause to AL.33
		Chapter 11: Changed to only outline dimensional drawing
		Section 11.2 (2): Addition
		Section 12.2 (1): Review of Note for Table 12.1
		Section 12.3: Correction of dynamic brake time constant graph
		Chapter 13: Deletion of MR-CPC98CBL3M communication cable
		Section 13.1.1 (4)(c): Review of outline drawing
		Section 13.1.2 (1): Deletion of MR-PWCNF power supply connector set
		Section 13.1.2 (1)1), 6): Change of encoder side connector models
		Section 13.1.2 (1)19), 20): Change of terminal models
		Section 13.1.2 (2)(a)2): Addition of description for fabrication
		Section 13.1.3: Addition of POINT
		Section 13.1.3 (4): Addition of cable length
		Change in connection diagram
		Section 13.2.1 (1): Addition of Note for recommended wires
		Section 13.2.8 (1): Addition of leakage current to recommended filter
		Section 14.1.2 (2): Deletion of MR-CPC98CBL3M communication cable
		Section 14.11.1 (6): Addition
		Section 14.11.2 (8): Addition
		Section 15.7: Addition of POINT
		Section 15.8.1 (1)(b): Change in b) Coordinates when zero address is changed
		to other than 0
		Section 15.8.2 (1)(b): Review of connection diagram
		Section 15.9: Change of display screen
		Section 15.10.1 (1): Deletion of Cause 5 of ABS checksum error
Feb.,2001	SH(NA)030006-C	Addition of MR-J2S-500A, 700A servo amplifiers
		Addition of HC-KFS73, HC-SFS502, HC-SFS702, HC-RFS353, HC-RFS503,
		HC-UFS502, HC-UFS353 servo motors
		Section 1.2: Function block diagram modification
		Section 1.7: Overall reexamination
		Section 3.7.1(2): Addition of single-phase 100 to 120VAC
		Section 3.7.2: Addition of regenerative brake converter and brake unit
		Section 5.1.2(2): No. 0, Item addition to regenerative brake option selection
		No. 5, Example addition
		No. 27, Setting range change
		No. 49, AL.26 addition
		Section 5.2.2: Overall reexamination
		Section 7.4(1): Reexamination
		Chapter 8: Hierarchy reexamination
		Section 10.2.2: AL.30, Reexamination
		AL.8E, Reexamination of Cause and Action
		Section 11.1(4)(5): Addition
		Section 11.2(3): Addition
		Section 12.1(3): Addition
		Chapter 13: Hierarchy reexamination
		Section 13.1.4(1): Connection diagram change
		Cable addition
		Section 13.1.4(3): Reexamination
		Section 13.2.1(1): Connection diagram change
		Wire table addition
	i	Chapter 15: Addition of Note on AL.25

Print data	*Manual number	Revision
Oct.,2002 SH(NA)030006-D		Servo amplifier: Addition of MR-J2S-11KA, MR-J2S-15KA and MR-J2S-22KA
		Servo motor: Addition of HA-LFS11K2, HA-LFS15K2, HA-LFS22K2 and HC-LFS□
		SAFETY INSTRUCTIONS: Addition of About processing of waste
		Addition of FOR MAXIMUM SAFETY
		Addition of EEP-ROM life
		Compliance with EC Directives 2: Addition of Note to (3)
		Reexamination of sentences in (4)(a)
		Conformance with UL/C-UL Standard: Addition of (6) Attachment of servo motor
		Addition of (7) About wiring protection
		Section 1.4: Change made to the contents of the test operation mode
		Section 1.7.2 (4): Addition
		Section 1.8 (5): Addition
		Section 2.3 (3): Sentence change
		Section 3.1.1 (1), (2): Addition of Note 14
		Section 3.1.2: Addition of Note 14
		Section 3.1.3: Addition of Note 12
		Section 3.2: Addition of Note
		Section 3.5: Addition of Note
		Section 3.7: Addition of POINT
		Section 3.8.2: Addition of POINT
		Overall reexamination
		Section 3.8.3: Addition of Note
		Section 3.11: Overall reexamination
		Section 3.13: Addition
	Section 4.2.3: POINT sentence change	
		Section 4.2.4: POINT sentence change
		Section 5.2 (2): Addition of regenerative brake option to parameter No. 0
		Addition of CN1B-pin 19's function selection to parameter No. 1
		Modification made to the contents of parameter No. 5
		Reexamination of the contents of parameter No. 23
		Addition of AL. 37-related sentences to parameter No. 49
		Section 5.2.1 (3): Reexamination of some servo motor speeds
		Section 5.2.2: Changed to analog monitor
		Section 7.2.2: POINT sentences addition
		Section 10.2.1: Sentence addition
		Section 10.2.2: Addition of 4. to alarm 16
		Addition of 3. to alarm 20
		Addition of 6. to alarm 33
		Changing of occurrence factor and checking method of alarm 50
		Changing of occurrence factor and checking method of alarm 50 Changing of occurrence factor and checking method of alarm 51
		Section 11.2 (1): Overall change
		Section 12.1 (4): Addition
		Note sentence addition
		Section 12.3: Note sentence addition
		Section 13.1.1 (1): Regenerative brake option addition
		Section 13.1.1 (1): Regenerative brake option addition Section 13.1.1 (3): Parameter setting addition
		Section 13.1.1 (d): Reexamination
		Section 13.1.1 (4): Recadifination Section 13.1.1 (5): Outline drawing addition
		Section 13.1.2: Addition of FR-BU-55K brake unit

Print data	*Manual number	Revision
Oct.,2002	SH(NA)030006-D	Section 13.1.3: Addition of FR-BU-55K brake unit
		Section 13.1.4: Addition
		Section 13.1.5 (1): Configuration diagram reexamination
		Note sentence addition
		Addition of connector sets and monitor cables
		Section 13.1.5 (2): POINT sentence addition
		Section 13.1.9 (2)(a): Reexamination
	Section 13.2.1 (1): Reexamination	
		Section 13.2.3: Reexamination
		Section 13.2.4: Addition
		Section 13.2.8 (1): Leakage current breaker addition
		Section 13.2.9 (1): EMC filter addition
		Section 14.1.2 (2): Personal computer connector corrected to D-SUB9
		Section 14.11: Addition of POINT
		Section 14.12.7 (2)(d): Addition
Jun., 2003	SH(NA)030006-E	Safety Instructions 1. To prevent electric shock: Sentence addition
,	, ,	3. To prevent injury: Sentence addition
		4. Additional instructions: Partial sentence change
		COMPLIANCE WITH EC DIRECTIVES 2. (6) (a): Addition
		Section 1.3: Inrush current addition
		Section 3.6.2 (3) (a) 1): Partial figure change
		Section 3.6.2 (3) (b) 1): Partial figure change
		Section 3.8.3: Partial figure change
		Section 3.13.3: Partial terminal box inside figure change
		Section 4.2: CAUTION sentence addition
		Section 5.1.2 (2): Parameter No. 0 Addition of (The built-in regenerative brake resistor is used.) to "Regenerative brake option is not used"
		Addition of FR-CV to the setting of 01 in Selection of regenerative brake option
		Partial sentence deletion Parameter No. 20 Addition of sentence to Slight vibration
		suppression control
		Section 5.2.1 (3): Servo amplifier, Electronic gear, 3000r/min changed to 2048/125
		Servo amplifier, Electronic gear, 2000r/min changed to 4096/375
		Section 6.4 (2): Sentence change
		Section 6.6 (3) (a): In position LNP changed to INP
		Section 10.2.1: Partial sentence change
		Section 10.2.2: AL. 12 to 15 Contents reexamination
		AL. 37 Addition of Cause 3
		AL. 50 Partial contents change
		AL. 51 Addition of "During rotation: 2.5s or more"
		Section 12.3: Change of sentence that explains "te"
		Section 12.5: Addition
		Section 13.1.1 (4) (d): Partial connection diagram change
		Section 13.1.2: Addition of "When using the brake unit, set "01 □□" in
		parameter No. 0"
		Section 13.1.3: Addition of "When using the power regeneration converter, set "01 □ □" in parameter No. 0"
	1	VI - III parameter 140. V

Print data	*Manual number	Revision
Jun., 2003	SH(NA)030006-E	Section 13.1.4 (2): Partial connection diagram change
		Section 13.1.10: Addition
		Section 13.2.1 (1): Correction of the AWG of the recommended wire 60mm ² to 2/0
		Section 13.2.10 (2) (3): Correction of the position meter model name to
		RRS10M202
		Section 14.12.7 (2) (b): Addition of ST1 to the Forward rotation start data
		Addition of ST1 to the Reverse rotation start data
		Section 14.12.7 (3) (b): Servo-on Stroke end changed to ON
		Section 15.4: Correction of the Command pulses of the positioning module to differential line driver type
Oct., 2003	SH(NA)030006-F	Reexamination of Servo Configuration software representation
,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Safety Instructions 3. To prevent injury: Reexamination of some sentences
		COMPLIANCE WITH EC DIRECTIVES (3) (4): Change to IEC60664-1
		Section 3.6.2 (7): Addition of explanation on JP11 in the case of 11kW or more
		Section 5.1.2 (2): Reexamination of part of parameter No.20
		Classification of automatic setting in Low-pass filter selection
		of parameter No. 60 Reexamination of part of parameter No.
		76 sentences
		Section 5.2.1 (3): Addition of 10 ³ to expression
		Section 10.2.2: Addition of Definition, Cause and Action to AL.32
		Section 12.5: Change of wiring length to 1m
		Section 13.1.1 (4): Sentence reexamination
		Section 13.1.1 (5) (b) (c): Regenerative brake option outline dimension drawing
		reexamination
		Section 13.1.9 (2) (a): Reexamination of Windows trademarks
		Section 13.2.9 (3): Reexamination of outline dimension drawings of HF3040A-
		TM/HF3050A-TM/HF3060A-TMA and HF3080-TMA/
		HF3100A-TMA
		Section 15.8.1 (3) (c): Correction to error in writing
		Section 15.8.3 (2) (a) 3): Correction to error in writing
Oct., 2004	SH(NA)030006-G	Section 1.2: Partial diagram reexamination
		Section 1.3: Addition of Note
		Section 1.5 (2): Partial addition/change
		Section 3.1.1 (1): Partial diagram change
		Section 3.1.1 (2): Partial diagram and Note change
		Section 3.1.2: Partial diagram change
		Section 3.1.3: Partial diagram change
		Section 3.3.2 (2): Functions/Applications of Speed reached is changed
		Section 3.4.1 (5): Addition of CAUTION
		Section 3.4.2 (1) (a): Addition of Note2
		Section 3.4.4 (3) (b): Partial addition of table
		Section 3.5: Addition of CAUTION
		Section 3.5 (3): Change of text
		Section 3.6.1: Partial diagram reexamination
		Section 3.9 (3) (d): Partial diagram reexamination
		Section 3.9 (3) (e): Partial diagram reexamination
		Section 3.11: Addition of POINT
		Section 4.2.4 (4) 2): Partial text deletion

Print data	*Manual number	Revision
Oct., 2004	SH(NA)030006-G	Section 5.1.2 (2): Partial parameterNo.20 change
		Section 5.2.1 (1) (b): POINT sentence addition
		Section 10.2.2: CAUTION sectence addition,AL.12 partial Cause change,AL.52
		addition of Note/change of Definition, AL.17 partial addition
		Section 12.1: Change of Note
		Section 12.3: HC-LFS series of graph is addition
		Section 13.1.1 (b)b.: Partial table value of reexamination
		Section 13.1.1 (4): Addition of POINT
		Section 13.1.1 (4) (b): Note sentence addition
		Section 13.1.1 (4) (c): Partial diagram change
		Section 13.1.1 (4) (d): Partial text change
		Section 13.1.1 (5) (c): Change of diagram
		Section 13.1.2 (2): Partial change of Note2
		Section 13.1.3 (2): Addition of Note2
		Section 13.1.4 (1): Partial sentence delection
		Section 13.1.9 (2): Partial reexamination
		Section 13.1.9 (2) (a): Partial addition of Note
		Section 13.1.10 (2): Addition of Note4
		Section 13.1.10 (3) (d): Addition of Note
		Section 13.1.11: Addition
		Section 13.2.3: Partial diagram/dimensions reexamination
		Section 13.2.7 (2) (d): Partial diagram change
		Section 13.2.7 (2) (e): Partial diagram change
		Section 13.2.9 (2): Partial Note deletion
		Section 13.2.9 (3): Partial diagram change
		Section 15.7.4: Partial diagram reexamination
Dec.,2005	SH(NA)030006-H	Safety Instructions:Sentence addition
		FOR MAXIMUM SAFETY: Addition of sentence
		Section 1.5:Change of Note for power supply
		Section 1.8: Change of Note2
		Chapter 2:Addition of CAUTION
		Section 3.1.1 (1): Partial change of connection diagram, Change of Note5
		Section 3.1.1 (2):Partial change of connection diagram, Change of Note5 and
		13
		Section 3.1.2:Partial change of connection diagram, Change of Note5
		Section 3.1.3:Partial change of connection diagram, Change of Note5
		Section 3.3.1 (3):Change of Note4
		Section 3.3.2 (2):SA explanation change
		Section 3.6.2 (4) (b) 2): Diagram reexamination
		Section 3.7.1:Diagram reexamination
		Section 3.7.2:L1, L2, L3 partial reexamination in the table
		Section 3.9:Addition of CAUTION
		Section 3.9 (3) (d):Change of time from power OFF to base circuit OFF
		Section 3.11.1:Addition
		Section 3.11.1:Addition Section 3.13.3:Change of drawing of servo motor terminal box outside
		Section 4.2.2 (3):Change of parameter No. 3 setting value in the table

Print data	*Manual number	Revision
Dec., 2005	SH(NA)030006-H	Section 5.1.2 (2):Addition of Note for parameter No.17
		Partial reexamination of sentence for parameter No.19
		Section 5.2.2:Change of sentence
		Section 5.2.2 (2):Addition of Note
		Section 6.6 (2) (a):Change of Note3
		Section 10.2.1:AL. 45, 46 addition of Note
		Section 10.2.2:AL. 37 addition of Cause
		Section 10.2.3:Addition of POINT, AL.92 addition of Cause
		Section 12.1:Reexamination of Note
		Section 13.1.1 (5):(b), (e) change of outline drawing
		Section 13.1.2 (2):Diagram addition of P1 terminal, Reexamination of Note
		Section 13.1.3 (2):Diagram addition of P1 terminal, Reexamination of Note
		Section 13.1.4 (2):Diagram addition of P1 terminal, Reexamination of Note
		Section 13.1.10 (2):Diagram addition of P1 terminal, Reexamination of Note
		Section 13.1.10 (5): Partial table change
		Section 13.2.7 (2) (d):FR-BSF01 change of dimensions
		Section 14.12.3 (2):Reexamination of POINT
		Section 15.1.1:Reexamination of diagram
		Section 15.7.3 (2):Addition of POINT
		Section 15.7.4:Partial reexamination of diagram
		Section 15.8.3 (2) (c), (d):Addition of Note2

HEADQUARTERS	
MITSUBISHI ELECTRIC EUROPE B.V.	EUROPE
German Branch	
Gothaer Straße 8	
D-40880 Ratingen	
Phone: +49 (0)2102 / 486-0 Fax: +49 (0)2102 / 486-1120	
MITSUBISHI ELECTRIC EUROPE B.V.	FRANCE
French Branch	FRANCE
25, Boulevard des Bouvets	
F-92741 Nanterre Cedex	
Phone: +33 (0)1 / 55 68 55 68	
Fax: +33 (0)1 / 55 68 57 57	
MITSUBISHI ELECTRIC EUROPE B.V.	IRELAND
Irish Branch Westgate Business Park, Ballymount	
IRL-Dublin 24	
Phone: +353 (0)1 4198800	
Fax: +353 (0)1 4198890	
MITSUBISHI ELECTRIC EUROPE B.V.	ITALY
Italian Branch	
Viale Colleoni 7	
I-20041 Agrate Brianza (MI) Phone: +39 039 / 60 53 1	
Fax: +39 039 / 60 53 312	
MITSUBISHI ELECTRIC CORPORATION	JAPAN
Office Tower "Z" 14 F	<i>37</i> 11 7111
8-12,1 chome, Harumi Chuo-Ku	
Tokyo 104-6212	
Phone: +81 3 622 160 60 Fax: +81 3 622 160 75	
MITSUBISHI ELECTRIC EUROPE B.V. UK Branch	UK
Travellers Lane	
UK-Hatfield, Herts. AL10 8XB	
Phone: +44 (0)1707 / 27 61 00	
Fax: +44 (0)1707 / 27 86 95	
MITSUBISHI ELECTRIC EUROPE B.V.	SPAIN
Spanish Branch	
Carretera de Rubí 76-80	colona)
E-08190 Sant Cugat del Vallés (Bar Phone: +34 93 / 565 3131	ceivila)
Fax: +34 93 / 589 1579	
MITSUBISHI ELECTRIC AUTOMATION	USA
500 Corporate Woods Parkway	331
Vernon Hills, IL 60061	
Phone: +1 847 478 21 00	
Fax: +1 847 478 22 83	

GEVA	AUSTRI
Wiener Straße 89	
AT-2500 Baden Phone: +43 (0)2252 / 85 55 20	
Fax: +43 (0)2252 / 488 60	
TEHNIKON	BELARU
Oktyabrskaya 16/5, Off. 703-711	
BY-220030 Minsk	
Phone: +375 (0)17 / 210 46 26 Fax: +375 (0)17 / 210 46 26	
Koning & Hartman B.V.	BELGIU
Industrial Solutions	DEEGIO
Woluwelaan 31	
BE-1800 Vilvoorde Phone: +32 (0)2 / 257 02 40	
Fax: +32 (0)2 / 257 02 49	
AKHNATON	BULGARI
4 Andrej Ljapchev Blvd. Pb 21	
BG-1756 Sofia	
Phone: +359 (0)2 / 97 44 05 8 Fax: +359 (0)2 / 97 44 06 1	
INEA CR d.o.o.	CROATI
Losinjska 4 a	CHOAL
HR-10000 Zagreb	02/02
Phone: +385 (0)1 / 36 940 - 01/	-02/ -03
Fax: +385 (0)1 / 36 940 - 03	CZECII DEDUDI
AutoCont Control Systems, s.r.o. Jelinkova 59/3	CZECH KEPUBLI
CZ-721 00 Ostrava Svinov	
Phone: +420 (0)59 / 5691 150	
Fax: +420 (0)59 / 5691 199	
AutoCont Control Systems, s.r.o.	CZECH REPUBL
Technologická 374/6 CZ-708 00 Ostrava-Pustkovec	:
Phone: +420 595 691 150	
Fax: +420 595 691 199	
B:TECH, a.s.	CZECH REPUBL
Na Ostrove 84 CZ-58001 Havlickuv Brod	
Phone: +420 (0)569 / 408 841	
Fax: +420 (0)569 / 408 889	
B:TECH, a.s.	CZECH REPUBL
Headoffice U Borové 69	
CZ-580 01 Havlickuv Brod	
Phone: +420 569 777 777	
Fax: +420 569 777 778	
Beijer Electronics A/S Lautruphoj 1-3	DENMAR
DK-2750 Ballerup	
Phone: +45 (0)70 / 26 46 46	
Fax: +45 (0)70 / 26 48 48	
Beijer Electronics Eesti OÜ	ESTONI
Pärnu mnt.160i EE-11317 Tallinn	
Phone: +372 (0)6 / 51 81 40	
Fax: +372 (0)6 / 51 81 49	
Beijer Electronics OY	FINLAN
Jaakonkatu 2	
FIN-01620 Vantaa Phone: +358 (0)207 / 463 500	
Fax: +358 (0)207 / 463 501	
UTECO A.B.E.E.	GREE
5, Mavrogenous Str.	
GR-18542 Piraeus	
Phone: +30 211 / 1206 900 Fax: +30 211 / 1206 999	
Meltrade Ltd.	HUNGAF
Fertő utca 14.	HUMIUM
HU-1107 Budapest	
Phone: +36 (0)1 / 431-9726 Fax: +36 (0)1 / 431-9727	
	LATV
Beijer Electronics SIA Vestienas iela 2	LAIVI
LV-1035 Riga Phone: +371 (0)784 / 2280 Fav: +371 (0)784 / 2281	

Fax: +371 (0)784 / 2281

Beijer Electronics UAB	LITHUANIA
Savanoriu Pr. 187	
T-02300 Vilnius	
Phone: +370 (0)5 / 232 3101	
Fax: +370 (0)5 / 232 2980	
NTEHSIS srl	MOLDOVA
old. Traian 23/1	
MD-2060 Kishinev	
Phone: +373 (0)22 / 66 4242 Fax: +373 (0)22 / 66 4280	
. ,	NETHERI AND
Coning & Hartman B.V.	NETHERLANDS
Haarlerbergweg 21-23 NL-1101 CH Amsterdam	
Phone: +31 (0)20 / 587 76 00	
Fax: +31 (0)20 / 587 76 05	
Beijer Electronics AS	NORWAY
ostboks 487	NUNWAI
10-3002 Drammen	
Phone: +47 (0)32 / 24 30 00	
Fax: +47 (0)32 / 84 85 77	
MPL Technology Sp. z o.o.	POLAND
Jl. Krakowska 50	
PL-32-083 Balice	
Phone: +48 (0)12 / 630 47 00	
ax: +48 (0)12 / 630 47 01	
irius Trading & Services srl	ROMANIA
Aleea Lacul Morii Nr. 3	
RO-060841 Bucuresti, Sector 6	
Phone: +40 (0)21 / 430 40 06 Fax: +40 (0)21 / 430 40 02	
	CERRIA
RAFT Consulting & Engineering d	
Bulevar Svetog Cara Konstantina 8 SER-18106 Nis	0-80
Phone: +381 (0)18 / 292-24-4/5 ,	523 962
Fax: +381 (0)18 / 292-24-4/5 , 523	
NEA SR d.o.o.	SERBIA
Karadjordjeva 12/260	JENDIA
SER-113000 Smederevo	
Phone: +381 (0)26 / 617 163	
fax: +381 (0)26 / 617 163	
S MTrade Slovensko, s.r.o.	SLOVAKIA
ajanskeho 58	
K-92101 Piestany	
Phone: +421 (0)33 / 7742 760	
ax: +421 (0)33 / 7735 144	
NEA d.o.o.	SLOVENIA
tegne 11	
il-1000 Ljubljana	
Phone: +386 (0)1 / 513 8100	
ax: +386 (0)1 / 513 8170	
Beijer Electronics Automation AB	SWEDEN
lox 426	
SE-20124 Malmö	
hone: +46 (0)40 / 35 86 00 ax: +46 (0)40 / 35 86 02	
. ,	CHILDREN, A.
CONOTEC AG	SWITZERLAND
interdorfstr. 12	

EURASIAN REPRESENTATIVES				
Kazpromautomatics Ltd. 2, Scladskaya str. KAZ-470046 Karaganda Phone: +7 3212 / 50 11 50 Fax: +7 3212 / 50 1150	KAZAKHSTAN			
AVTOMATIKA SEVER Lva Tolstogo str. 7, off. 311 RU-197376 St Petersburg Phone: +7 812 / 718 3238 Fax: +7 812 / 718 3239	RUSSIA			
CONSYS Promyshlennaya st. 42 RU-198099 St. Petersburg Phone: +7 812 / 325 36 53 Fax: +7 812 / 325 36 53	RUSSIA			
ELECTROTECHNICAL SYSTEMS SIBERI Derbenevskaya st. 11A, Office 69 RU-115114 Moscow Phone: +7 495 / 744 55 54 Fax: +7 495 / 744 55 54	A RUSSIA			
STC DRIVE TECHNIQUE Poslannikov per. 9, str 1 RU-105005 Moscow Phone: +7 495 / 790 72 10 Fax: +7 495 / 790 72 12	RUSSIA			

MIDDLE EAST REPRESENTATIVES

Sherf Motion Techn. Ltd.
Rehov Hamerkava 19 **IL-58851 Holon**Phone: +972 (0)3 / 559 54 62
Fax: +972 (0)3 / 556 01 82

AFRICAN REPRESENTATIVE

CBI Ltd. SOUTH AFRICA
Private Bag 2016
ZA-1600 Isando
Phone: + 27 (0)11 / 928 2000
Fax: + 27 (0)11 / 392 2354

CH-8309 Nürensdorf Phone: +41 (0)44 / 838 48 11 Fax: +41 (0)44 / 838 48 12

Darulaceze Cad. No. 43 KAT. 2 **TR-34384 Okmeydani-Istanbul** Phone: +90 (0)212 / 320 1640 Fax: +90 (0)212 / 320 1649

15, M. Raskova St., Fl. 10, Office 1010 **UA-02002 Kiev** Phone: +380 (0)44 / 494 33 55 Fax: +380 (0)44 / 494-33-66

CSC Automation Ltd.

TURKEY

UKRAINE

GTS